Solid Target Studies for NF

Rob Edgecock

22 Sept. 2010

On behalf of:

J.Back, R.Bennett, S.Gray, A.McFarland, P.Loveridge & G.Skoro

Tungsten wire at 2000K

Reminder

Solid means

- tungsten bars, each ~2x20cm
- 150-200 bars
- changed between beam pulses
- cooled radiatively or possibly by helium/water
- Why?
 - Iots of experience world-wide & safer
 - already have a license at RAL
- Issues for solids:
 - shock original show-stopper
 - radiation damage
 - target change
- Focus has been on shock but now moving on

Shock

- Was solid show-stopper: one of main reasons for liquids
- Impossible to lifetime test with proton beam, so

60kV, 8kA PSU, 100ns rise time

Laser Doppler Vibrometer

Used to measure wire surface velocity & CF LS-Dyna

Longitudinal and radial mesurements possible

- Longitudinal
 - Bigger oscillations: ~µm; lower
 - But.....temperature variation al
 - Wire fixed at one end, constrai
 - Oscillations more difficult to up
- Radial

- Smaller oscillations: 50-100nm; higher frequency: ~12MHz
- But.....fixed temperature
- Easier to model

Longitudinal oscillations

Longitudinal oscillations vs LSDyna

Frequency analysis

Radial oscillations

Radial oscillations vs LSDyna

Radial oscillations: frequency analysis vs LSDyna

Comparison with Measurements

Young's Modulus of Tungsten

Page 1-7, Figure 2

Measurement in Wire Tests

Tungsten Young's Modulus

Tensile Strength of Tantalum

Tensile Strength of Tantalum

Temperature [°C]

Tensile Strength of Tungsten

Tensile Strength of Tungsten

Shock Conclusions

- We have demonstrated:
 - LS-Dyna model we are using is correct
 - Tungsten is strong enough at high temperature
 - It has a more than sufficient lifetime
- What still needs to be done:
 - Use beams to confirm bulk samples
 - Measure with LDV to cf LSDyna
 - Most likely: use Ilias's facility at CERN
 - Measure strength after irradiation......

Radiation Damage

NB Static measurements.

Radiation Damage

- Targets must be changed between beam pulses, i.e. 50Hz
- Must:
 - have minimal impact on pion production
 - have minimal effect on shielding
 - be reliable
 - allow the replacement of individual targets remotely
 - not be damaged by heat or radiation
 - be based as much as possible on existing technology
- Various options studied by a small group:

Roger Bennett Dave Bellenger David Jenkins Leslie Jones

- Focus until recently: target wheel
- Helmholtz coil looks difficult due to forces

All tungsten. Manufacture discussed with Plansee. Visit to factory soon.

Proposed lubricant (coating): WS₂ Demonstrated to work to ~1300°C in vacuum.

Proton beam

• Early days

• Work planned to verify:

1.	Thermal Calculations on Chain/Target Design.	Goran
2.	Thermal Shock Calculations on Chain/Target Design.	Goran
3.	Yield Calculations and Optimisation.	John
4.	Chain Design Optimisation – roller chain or alternative.	David
	Consult with Reynolds Chain, Plansee.	
5.	Calculate Strength of Helmholtz Insert.	David
6.	Chain/Helmholtz Insert Design Optimisation.	David
	Friction Reduction – WS_2 ? Tests.	
7.	Chain/Helmholtz Insert Design Stress Analysis.	David
8.	Chain Drive Motor and Timing Control Design.	Adrian?
9.	Model of Chain. Running Tests – thermal - life.	Roger
10	Radiation, Activation, Shielding Analysis.	John
11.	Radiation studies	All
12.	Remote Handling, Replacement, Servicing.	David
13.	Magnet Design.	Roger/?
14.	Target Station Design.	David

Conclusions

• Shock:

- We've done this to death!
- Don't believe it is a problem
- Tests with beams to come
- Radiation damage:
 - Lots of local experience exists
 - Needs to be applied to our case
 - But existing data are encouraging
- Target change:
 - New scheme under study
 - Looks encouraging, but more studies required