

Carbon Target Design and Optimization for an Intense Muon Source

X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ.

2014 MAP Winter Collaboration Meeting 3-7 December, 2014 SLAC

OUTLINE

- Carbon target concept and fieldmap
- ROOT-based geometry setting for target station
- Carbon target optimization and yield comparison (no beam dumps)
- Design of beam dumps
- Summary

Carbon Target Concept

http://physics.princeton.edu/mumu/target/hptw5_poster.pdf

Fieldmap along SC axis (Capture Magnet 20to2T5m120cm)

ROOT-based Target Setting

New target setting (ROOT-based geometry).

Previous target setting (non-standard and standard geometry in MARS15)

12/4/14^y

Carbon Target Optimization

- Simulation code: MARS15(2014) with ICEM 4 = 1 (default) and ENRG 1 = 6.75, 2 = 0.02, 3 = 0.3, 4 = 0.01, 5 = 0.05, 6 = 0.01, 7 = 0.01;
- Carbon target configuration: Fieldmap (20T→2T) with taper length of 5 m, Graphite density = 1.8 g/cm³;
- Beam pipe radius: 13 cm (initial) and 23 cm (final);
- Proton beam: 6.75 GeV (KE), 1 MW, ¼ of target radius, waist and 5-50 μm geometric emittance at z = 0 m (intersection point), launched at z = -100 cm;
- *Production collection:* z = 50 m, 40 MeV < KE < 180 MeV;
- Particle distribution for front end: created at z = 2 m.

New Procedure for Generating the Launched Beam at z = -100 cm

- Generate a negative proton beam having desired 2D emittance and waist at z = 0;
- Track back all negative protons in the beam from z = 0 to the left side and collect them at z = -100 cm;
- Generating a positive proton beam by changing the signs of charge and px, py and pz of negative proton beam above. This will be the launched beam to the right at z = -100 cm.

Yield Comparison (5 µm emittance) (no-tilt *vs*. tilt proton beam, no beam dump)

Optimized target length is 80 cm and target radius is 0.8 cm for tilt or 0.64 cm for no-tilt beam. Optimized tilt beam angle is 65 mrad. Collinear target and beam. TR/BR (target radius/beam radius) = 4.

~ 13% advantage to tilting the beam/target

Yield Comparison (varied emittance) (no-tilt vs. tilt proton beam, no beam dump)

http://physics.princeton.edu/mumu/target/targettrans106.pdf

12/4/14

Advantage of Higher Emittance Beams

For a fixed target radius (8 mm on this page), higher beam emittance \Rightarrow higher beam divergence, more diffuse beam at upstream end of target, \Rightarrow lower peak power deposition.

For emittance $\ge 20 \ \mu m$ the peak power deposition is only $\approx 1/2$ that for 5 μm , \Rightarrow additional advantage to use of higher emittance beams.

²⁰to2T5mDL C TRGT SGNT for [0.0 < r < 0.1 cm, -40.0 < z < 40.0 cm]

8/8/14

http://physics.princeton.edu/mumu/target/Ding/ding_140807.pdf

Simple Setup of Beam Dumps in ROOT (same tilt angle as the target)

Target: length of 80 cm (z = -40 cm to z = 40 cm), radius of 0.80 cm, beam angle of 65 mrad, co-linear target and beam, TR/BR = 4

1st beam dump rod: length of 60 cm (z = 40 cm to z = 100 cm),Radius 3 x target radius, beam angle of 65 mrad

 2^{nd} beam dump rod: length of 60 cm (z = 100 cm to z = 160 cm), Radius 3 x target radius, beam angle of 65 mrad

У

 Rotation defined by GRANT3 angles: TGeoRotation *r1 = new TGeoRotation(); r1->SetAngles(th1,phi1, th2,phi2, th3,phi3) This is a rotation defined in GEANT3 style. Theta and phi are the spherical angles of each axis of the rotated coordinate system with respect to the initial one.

• Rotated cylinder can be described as having axes 1, 2 and 3, where 3 is the symmetry axis and goes from the origin to the specified point (x,y,z). Axis 1 is defined to lie in the x-z plane

phi1 = 0
th1 =
$$acos(x / sqrt(x^2 + z^2))$$

phi2 = $atan2[(x^2 + z^2)/x, -y]$
th2 = $acos[-yz/sqrt(L^2(x^2 + z^2)]$
th3 = $acos(z/L)$
phi3 = $atan2(y,x)$

Target: length of 80 cm (z = -40 cm to z = 40 cm) and radius: 0.80 cm, beam angle of 65 mrad in the y-z plane, center of end of target (0,-2.6,40)

1st beam dump rod: radius 3 x target radius, length of 60 cm (z = 40 cm to z = 100 cm), centers of end faces: (0,-2.6,40), (-2.3,-5.9,100)

2nd beam dump rod: radius 3 x target radius, length of 60 cm

(z = 100 cm to z = 160 cm), centers of end faces: (-2.3,-5.9,100), (-5.0,-8.6,160)

Particles at z = 5 m from Carbon Target

1 MW beam (9.26 × 10¹⁴ protons with KE of 6.75 GeV)

beam angle = 65 mrad, target radius = 0.8 cm

L _{dump} (cm)	R _{dump} /R _{ta} rget	Total KE (protons) (r <23 cm) [Watts]	Total KE (non-protons) [Watts]	Protons KE > 6 GeV (× 9.26 × 10 ¹⁰)	Yield at z = 50 m (× 9.26 × 10 ¹⁰)
Geometry Setting of Beam Dumps in MARS					
0	0	88359	105454	301	1240.7
120	3	66430	94936	130	1134.6
Advanced ROOT-based Geometry Setting for Beam Dumps					
0	0	84479	98313	283	1211
120	3	64199	84966	116	1061
Simple ROOT-based Target Geometry Setting for Beam Dumps (same tilt as the target)					
120	3	63415	85514	136	1096

Summary

- Target System: 1 MW, 6.75 GeV (KE) proton beam, the 20 T field on target drops to the ~2 T field in the rest of the Front End over ~ 5 m) and graphite target.
- Optima for graphite target (tilt beam):
 length = 80 cm, radius = 8 mm (with 2 mm rms beam radius), tilt angle = 65 mrad.
- Successfully designing the target system and complicated beam dumps with ROOT-based geometry.
- For 6.75 GeV (KE) beam, about 13% higher production by tilting the carbon target/proton beam.

Summary (Cont'd)

- Higher beam emittance and higher target radius are favored:
 - Improved the radiation cooling of the target,
 - Lower peak power deposition,
 - Only slight decrease in the particle yield,
 - Easier for Proton Driver to deliver higher emittance.
- Graphite proton beam dump now setup via ROOT:
 - 120 cm long, 24 mm radius, 2 segments,
 - Intercepts most of the (diverging) unscattered proton beam.
- Particle distributions were generated at z = 2m for Front End studies.