The Development of Fluidised Powder Target Technology for a Neutrino Factory or Muon Collider

Ottone Caretta, Chris Densham, Peter Loveridge

Rutherford Appleton Laboratory 22 September 2010

Fluidised powder target propaganda

Shock waves

- Material is already broken intrinsically damage proof
- No cavitation, splashing or jets as for liquids
- high power densities can be absorbed without material damage
- Shock waves constrained within material grains, c.f. sand bags used to absorb impact of bullets

Heat transfer

- High heat transfer both within bulk material and with pipe walls so the bed can dissipate high energy densities, high total power, and multiple beam pulses
- Quasi-liquid
 - Target material continually reformed
 - Can be pumped away, cooled externally & re-circulated
 - Material easily replenished
- Other

Targets

High

- Can exclude moving parts from beam interaction area
- Low eddy currents i.e. low interaction with NF solenoid field
- Fluidised beds/jets are a mature technology
- Most issues of concern can be tested off-line -> experimental programme

Questions for the experimental programme

- Can a dense material such as tungsten powder be made to flow?
- Is tungsten powder fluidisable (it is much heavier than any material studied in the literature)?
- Is it possible to generate a useful fluidised powder geometry?
- Is it possible to convey it
 - in the dense phase?
 - in the lean phase?
 - In a stable mode?
- What solid fraction is it possible to achieve? (a typical loading fraction of 90% w/w solid to air ratio is not good enough!)
- How does a dense powder jet behave?
- Difficult to model bulk powder behaviour analytically
- Physical test programme underway:
 - First results March 2009

High Powe

Test rig at RAL

- Powder
 - Rig contains 100 kg Tungsten
 - Particle size < 250 microns
- Total ~10,000 kg powder conveyed so far
 - > 100 ejection cycles
 - Equivalent to 20 mins continuous operation
- Batch mode

High Powe

argets

 Tests individual handling processes before moving to a continuous flow loop

1. Suction / Lift

Suction / Lift Load Hopper

Suction / Lift
 Load Hopper
 Pressurise Hopper

Suction / Lift
 Load Hopper
 Pressurise Hopper
 Powder Ejection and Observation

Le jet d'W

Contained stable flow

Contained unstable flow

Particle Image Velocimetry velocity distribution required to determine bulk density

20

16

Variations in the flow rate - typical 2bar ejection

Is the amount of material in the nozzle (or jet) constant?

Erosion Monitoring

- Expect rig lifetime to be limited by wear
- Wall thickness monitoring:
 - Dense-phase hopper / nozzle
 - No damage
 - Lean-phase suction pipework
 - Straight vertical lift to avoid erosion
 - Deflector plates
 - So far so good
- Design to avoid erosion problems is critical
 - Lean phase optimisation (\downarrow u, \uparrow p)
 - Avoid lean-phase bends ✓
 - Operate without discharge valve ✓
 - Replace deflector plate with powder/powder impact

Ultrasonic Thickness Gauge

Material	Vickers Hardness
Stainless-steel 316L	140
Tungsten	360
Alumina (Al ₂ O ₃)	1500
Boron Carbide (B ₄ C)	3200

Selected Material Hardness Values

A Flowing Powder Target Layout Sketch compatible with either solenoid or magnetic horn

- Potential powder target materials
 - Tungsten (W), ρ_{solid} 19.3 g/cc
 - Titanium? (Ti), ρ_{solid} 4.5 g/cc
 - Nickel (Ni), ρ_{solid} 8.9 g/cc
 - Titanium Oxide (TiO₂),
 ρ_{solid}4.2 g/cc

Schematic layout of a flowing powder superbeam target

Flowing powder target: interim conclusions

- Flowability of tungsten powder
 - Excellent flow characteristics within pipes
 - Can form coherent, stable, dense open jet (c.10 kg/s for 2cm dia)
 - Density fraction of 42% ± 5% achieved ~ static bulk powder density
- Recirculation

High Powe

Targets

- Gas lift works for tungsten powder (so far c. 2.5 kg/s, 4 × slower than discharge rate.
- NB this is equal to discharge rate for new baseline 1 cm diameter target at 10 m/s)
- Both contained and open powder jets are feasible
- A number of different flow regimes identified
- Design to mitigate wear issues is important for useful plant life – so far so good.

Rutherford Appleton Laboratory

No wear observed in any glass tubes used for discharge pipe tests

Flowing powder target: future work

- Optimise gas lift system for future CW operation
- Attempt to generate stable solid dense phase flow
- Investigate low-flow limit
- Carry out long term erosion tests and study mitigation
- Study heat transfer between pipe wall and powder
- Demonstrate magnetic fields/eddy currents are not a problem
 - Use of high field solenoid?
- Investigate active powder handling issues (cf mercury?)
- Demonstrate interaction with pulsed proton beam does not cause a problem
 - Application to use HiRadMat facility at CERN has been submitted

Input to the IDR

- O. Caretta and C.J. Densham, RAL, OX11 OQX, UK; T.W. Davies, Engineering Department, University of Exeter, UK; R. Woods, Gericke Ltd, Ashton-under-Lyne, OL6 7DJ, UK, PRELIMINARY EXPERIMENTS ON A FLUIDISED POWDER TARGET, Proceedings of EPAC08, Genoa, Italy, WEPP161
- C.J.Densham, O.Caretta, P.Loveridge, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK; T.W.Davies, University of Exeter, UK; R.Woods, Gericke Ltd, Ashton-under-Lyne, OL6 7DJ, UK THE POTENTIAL OF FLUIDISED POWDER TARGET TECHNOLOGY IN HIGH POWER ACCELERATOR FACILITIES Proceedings of PAC09, Vancouver, BC, Canada WE1GRC04
- TW Davies, O Caretta, CJ Densham, R Woods, THE PRODUCTION AND ANATOMY OF A TUNGSTEN POWDER JET, Powder Technology 201 (2010) 296-300

doi:10.1016/j.powtec.2010.03.018 | How to Cite or Link Using DOI Copyright © 2010 Elsevier B.V. All rights reserved.

The production and anatomy of a tungsten powder jet

T.W. Davies^{b, ,} , O. Caretta^{a, 1}, , C.J. Densham^{a, 1} and R. Woods^c

^a RAL, Chilton, Didcot, OX11 0QX, UK

^b Engineering Department, University of Exeter, UK

^o Gericke Ltd., Cavendish Street, Ashton-under-Lyne, OL6 7DJ, UK

Received 5 June 2009; revised 17 March 2010; accepted 19 March 2010. Available online 30 March 2010.

Abstract

A tungsten powder jet is a potential candidate technology for a particle production target in a future high power (i.e. Multi-MW) particle accelerator based facility, such as a so-called conventional neutrino Super Beam, a proposed Neutrino Factory, or a future neutron source. To test the viability of producing a suitable powder jet a few simple experiments were performed using standard pneumatic conveying equipment and the encouraging results are presented.

Graphical abstract

This paper describes some preliminary studies of the production of a horizontal jet of powdered tungsten undertaken to investigate the viability of such a jet for use as a beam target in a high power particle accelerator (The Neutrino Factory Project).

Unstable tungsten powder jet leaving a 20 mm ID cylindrical nozzle

Hig

argets

Po Keywords: Jet flow; Tungsten; Powder jet; High power target; Neutrino factory

And Finally

Live demonstration of tungsten power jet today in R12 at 3:30 today

