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Fluidised powder target propaganda
• Shock waves

– Material is already broken – intrinsically damage proof
– No cavitation, splashing or jets as for liquids
– high power densities can be absorbed without material damage
– Shock waves constrained within material grains, c.f. sand bags used to 

absorb impact of bullets 
• Heat transfer

– High heat transfer both within bulk material and with pipe walls - so the 
bed can dissipate high energy densities, high total power, and multiple 
beam pulses

• Quasi-liquid
– Target material continually reformed
– Can be pumped away, cooled externally & re-circulated
– Material easily replenished

• Other
– Can exclude moving parts from beam interaction area
– Low eddy currents i.e. low interaction with NF solenoid field
– Fluidised beds/jets are a mature technology
– Most issues of concern can be tested off-line -> experimental 

programme



Questions for the experimental programme
• Can a dense material such as tungsten powder be made to flow?
• Is tungsten powder fluidisable (it is much heavier than any material 

studied in the literature)?
• Is it possible to generate a useful fluidised powder geometry?  
• Is it possible to convey it 

– in the dense phase?
– in the lean phase?
– In a stable mode?

• What solid fraction is it possible to achieve?
(a typical loading fraction of 90% w/w solid to air ratio is not good 
enough!)

• How does a dense powder jet behave? 

• Difficult to model bulk powder behaviour analytically
• Physical test programme underway:

– First results March 2009



Test rig at RAL

• Powder
– Rig contains 100 kg 

Tungsten
– Particle size < 250 

microns
• Total ~10,000 kg powder 

conveyed so far
– > 100 ejection cycles
– Equivalent to 20 mins 

continuous operation
• Batch mode

– Tests individual handling 
processes before moving 
to a continuous flow loop
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Control Interface 
(GUI)

• Fully automated control system
– Process control
– Data Logging @ 20 Hz
– Hard-wired safety interlocks

Control System Interface (MATLAB)

Experiment 
notes

System 
indicator 
window

Warning 
messages

Emergency 
stop

Suction 
settings

Ejection 
settings
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Contained stable flow

Contained unstable flow



Particle Image 
Velocimetry

velocity distribution 
required to determine 

bulk density 

Ottone Caretta, Oxford, Nov 09



Variations in the flow rate – typical 2bar 
ejection

How much material would a proton beam interact 
with? 

Bulk density?
Is the amount of material in the nozzle (or jet) 

constant?



Erosion Monitoring
• Expect rig lifetime to be limited by wear

• Wall thickness monitoring:
– Dense-phase hopper / nozzle

• No damage
– Lean-phase suction pipework

• Straight vertical lift to avoid erosion
– Deflector plates

• So far so good

• Design to avoid erosion problems is critical
– Lean phase optimisation (↓u, ↑ρ)
– Avoid lean-phase bends 
– Operate without discharge valve 
– Replace deflector plate with powder/powder 

impact

Ultrasonic Thickness Gauge

Selected Material Hardness Values
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• Pipeline part full of material
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• Intermediate velocity
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•Pipeline almost full of material
•Unstable “plug flow”
•Intermediate velocity
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Pneumatic Conveying Regimes
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• Pipeline full of material, 50% v/v
• Low velocity
• Not yet achieved in our rig – further work
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A Flowing Powder Target Layout Sketch
compatible with either solenoid or magnetic horn

• Potential powder target 
materials
– Tungsten (W), ρsolid19.3 g/cc
– Titanium? (Ti), ρsolid4.5 g/cc
– Nickel (Ni), ρsolid8.9 g/cc
– Titanium Oxide (TiO2), 

ρsolid4.2 g/cc
Schematic layout of a flowing powder superbeam 

target



• Flowability of tungsten powder
– Excellent flow characteristics within pipes 
– Can form coherent, stable, dense open jet (c.10 kg/s for 2cm dia)
– Density fraction of 42% ± 5% achieved ~ static bulk powder density

• Recirculation
– Gas lift works for tungsten powder (so far c. 2.5 kg/s, 4 x slower 

than discharge rate. 
– NB this is equal to discharge rate for new baseline 1 cm 

diameter target at 10 m/s)

• Both contained and open powder jets are feasible 
• A number of different flow regimes identified
• Design to mitigate wear issues is important for useful 

plant life – so far so good. 
• No wear observed in any glass tubes used for 

discharge pipe tests

Flowing powder target: interim conclusions



• Optimise gas lift system for future CW operation
• Attempt to generate stable solid dense phase flow
• Investigate low-flow limit 
• Carry out long term erosion tests and study mitigation
• Study heat transfer between pipe wall and powder
• Demonstrate magnetic fields/eddy currents are not a 

problem
– Use of high field solenoid?

• Investigate active powder handling issues (cf mercury?)
• Demonstrate interaction with pulsed proton beam does 

not cause a problem
– Application to use HiRadMat facility at CERN has been 

submitted

Flowing powder target: future work
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And Finally

*Live* demonstration of tungsten 
power jet today in R12 at 3:30 today


