Future Cooling Experiments

R. B. Palmer (BNL)

FNAL

June 13 2008

Short Term 6D cooling Experiments

Demonstrate 6D cooling without acceleration using a wedge at MICE Tracks can be selected off line to represent a beam with dispersion at the wedge absorber. Reconstruction of emittances before and after the LiH or polyethylene wedge will show 6D cooling

Later re-acceleration can be included

Long Term 6D Cooling Experiments

• We must decide which part of the cooling should be tested The last stage of 6D cooling differs most from MICE technology

- We must first address magnetic field problems and decide how we will solve them
- Until we know we have a solution for any such problems it is premature to decide on or design the cooling experiment

Lattices used in above scheme

Breakdown vs. Magnetic Field

- Open cavity achieved specified field, but suffered unacceptable damage
- So 805 MHz clearly has a problem
- Scaling to 201 MHz assumed ($\propto \sqrt{f}$)
- So 201 MHz probably has a problem

Focused Electrons (Palmer et al)

- Field emitted electrons
- Focused by field
- \bullet Melts spot on opposite \rightarrow liquid squirt
- Heated by emission
- \bullet Vapourized & ionized \rightarrow breakdown

Twist of point (Norem et al)

- $E \times B$ twists anomally
- Broken tip leaves
- Heated by emission
- \bullet Vapourized & ionized \rightarrow breakdown

Predictions

- Horizontal normalization are fit to data
- Fit of Focus model is far better than for "twist" model

Possible Solutions

- 1. Use high pressure gas
 - \bullet Alvin predicts field distruction by plasma electrons from $\geq 10^{12} \mu s$
 - It is anyway unsuitable in final stage because we must use a local focus to get β_{\perp} low enough
- 2. Removing the fields at the RF with bucking coils
- 3. Use open rf, coils in irises, and "Magnetic Insulation"

Magnetic Insulation with all high field surfaces $\parallel B$

Put coils in the irises

• If the currents can be alternated

• For same polarity, requires reverse outer coils

Magnetic insulation in a simple pillbox at 90 degrees

CAVEL Simulation of 10 cm long simple 805 MHz cavity with 1 T magnetic field \perp axis

- Electrons move perpendicularly to field
- remaining close to surface
- Distance traveled depend on initial rf phase

Possible simple pillbox Experiment in MTA

• Using lab G Magnet and new simple pillbox cavity at multiple angles

This will be a better test of 'magnetic insulated rf

But angles should be good to a fraction of a degree, or adjustable over such a range, to see the sensetive angle dependence

- \bullet 805 MHz chosen for early test, although needed first in 201 MHz
- In this and following, the cavities are drawn without the special need shapes

Test of Multi-cell 805 Magnetic Insulation

- More realistic E and B fields
- Test concept of pressure flanges for cavity joints
- Geometry of early cooling (201 MHz)

Test of Multi-cell 201 Magnetic Insulation ??

- \bullet Essential if Current design cannot get 15 $\rm MV/m$
- This could be used at MICE for a cooling experiment
- Introduction of 0.125 T vertical not shown

Test of 10 T 6D cooling components

- Bending can be for Guggenheim or Snake
- Offset hydrogen pipe provides "wedge"
- Preliminary Not simulated yet

Parameters of 10T 6D cooling Lattice

Cell length	(cm)	90
Hydrogen length	(cm)	10
Wedge angle	(deg)	110
Ave bend field	(T)	0.25
Equilibrium trans emittance	(πmm)	0.4
Frequency	(MHz)	805
Acceleration length	(cm)	48
Average accelerating grad	(MV/m)	12.5
Surface fields	(MV/m)	37
Momentum	(MeV/c)	200
beta minimum	(cm)	5
beta maximum	(cm)	35
Full momentum acceptance	$(\pm\%)$	9

- Cooling rate per cell is relatively low because only 10 cm hydrogen per cell
- So 5 cells needed to get 4% fractionIal cooling
- But length the same as current MICE

Parameters of 10T 6D Cooling Experiment

Cells		5
Length	(m)	4.5
Initial Emittance	(πmm)	0.8
Fractional transverse cooling	(%)	4
Initial Momentum Spread	(%)	4
Fractional longitudinal cooling	(%)	3

In order to use MICE beam and detectors:

- Fiber tracks have too little resolution and too much scattering
- Use Hydrogen gas TPC ?
- If readout planes face out, scattering should ok
- σ_r in 5 T solenoid = 1 cm
- TPC radius diameter approx 8 cm

Matching into MICE detectors and beam

- Beam should be focused and collimated
- The 5 cells form an arc with bending radius 5.3 m

Questions

- Can MICE detectors measure an emittance of $800 \pmod{\pi \text{ mm mrad}}$ to 0.4% ? In order to measure 4% cooling to 10%
- What modifications might be needed ? We believe only a TPC might do the job
- Can it measure the momentum of such a beam to 10⁻⁶%? To measure a 2% change in an rms 3% beam to 10 % Probably need to enter solenoids off axis to get significant helix radius My guess is that there is no hope of meauring the bunch length to this accuracy
- What would the detector look like if we start from scratch at FNAL ?

Conclusion

- Needed Component Experiments
 - 1. Test principle of magnetic insulation with simple 805 MHz cavity at 90 degrees
 - 2. Build single magnetically insulated 805 MHz cavity
 - 3. Engineer multiple 805 MHz magnetically insulated cavities
 - 4. Develop compact Nb $_3$ Sn 10 T coils with return coils Slomo Caspi had looked at the parameters and proposed pre-compression method
 - 5. Engineer a hydrogen wedge in the above assembly
 - 6. Test one complete 10T 805 MHz 6D cooling cell
- Possible Cooling Experiments
 - 1. Short term 6D demonstration at MICE Worth a Letters article
 - 2. 6D cooling at 3T and 201 MHz at MICE Not as imortant as:
 - 3. 6D cooling at 10T and 805 MHz at MICE if possible