
We propose a new method for deriving an analytic solution for the electromagnetic
vector potential in any gauge directly from Maxwell’s equations for potentials..
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1 Introduction

To understand gauge transformations or gauge invariance in classical electrodynamics, it
is essential that we have detailed knowledge of the vector and the scalar potentials. In
general, the potentials are solved from Maxwell’s equations for potentials. But, Maxwell’s
equations for potentials contain a gauge ambiguity. If two sets of potentials are related by
a gauge transformation, then both sets are solutions of the equations (e.g., Refs. [1, 2]).

Thus, to solve for a unique set of potentials, we add a constraint involving the vector
or the scalar potential or both. Such a constraint is called a gauge condition. Then, we
solve for the potentials from the resulting equations after the gauge condition is applied.
But, each gauge condition generates its own equations for the potentials and hence its own
mathematical challenges. For example, both the scalar and the vector potentials in the
Lorenz gauge can be solved simply. But, the situation is not as straightforward for the
Coulomb gauge. Although the Coulomb-gauge scalar potential is easy to solve, there are
no general analytic solutions for the vector potential in Ref. [2]. It was only recently that 
general analytic solutions were obtained the vector potential in the Coulomb gauge [3–
14].
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In this paper, we propose a new method for deriving an analytic solution for the vector
potential in any gauge for an arbitrary charge-current distribution. The vector potential
is solved directly from Maxwell’s equations for potentials without using a gauge condition.
Because no gauge condition is used, the solution is universally valid for any gauge. We show
that the fields generated by our potentials in any gauge are gauge invariant and always
propagate with speed c from physical charge and current densities. In the Appendix, we
solve the vector potential using the Fourier transforms to make the mathematics easier to
grasp.

2 Direct, analytic solution for the vector potential in any
gauge from Maxwell’s equations for potentials

We consider localized charge and current densities, ρ(r, t) and J(r, t), which are turned on 
at t0. The electric field E, the magnetic field B, and Maxwell’s equations for potentials A 
and Φ are related by (in Gaussian units):

E(r, t) = −∇Φ(r, t)− 1

c

∂A(r, t)

∂t
, B(r, t) = ∇×A(r, t), (1)

∇2Φ(r, t) +
1

c

∂

∂t
[∇ ·A(r, t)] = −4πρ(r, t), (2)(

∇2 − 1

c2
∂2

∂t2

)
A(r, t) = −4π

c
J(r, t) +∇

(
∇ ·A(r, t) +

1

c

∂Φ(r, t)

∂t

)
. (3)

For simplicity, we assume that there are no boundary surfaces and that all potentials are
subjected to the initial conditions, A(r, t) = Φ(r, t) = 0 for all r at t ≤ t0, and the boundary
conditions, A(r, t) = Φ(r, t) = 0 for all t at |r| → ∞.

To solve for the vector potential A from (2) and (3), we write A = A1 +A2 where A1

and A2 are solutions of their respective equations:(
∇2 − 1

c2
∂2

∂t2

)
A1 = −4π

c
J, (4)

(
∇2 − 1

c2
∂2

∂t2

)
A2 = ∇

[
∇ · (A1 +A2) +

1

c

∂Φ

∂t

]
. (5)

From (4), it is clear that the solution for A1 is the vector potential A(L) in the Lorenz
gauge:

A1(r, t) = A(L)(r, t) =
1

c

∫
G(r, t|c|r′, t′)J(r′, t′)d3r′dt′, (6)

G(r, t|c|r′, t′) =
δ
(
t− |r−r′|

c − t′
)

|r− r′|
, (7)
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(
∇2 − 1

c2
∂2

∂t2

)
G(r, t|c|r′, t′) = −4πδ(r− r′)δ(t− t′). (8)

To solve for A2, we differentiate both sides of (5) with respect to t and use (2) to
eliminate (∂/∂t)[∇ · (A1 +A2)] to get,(

∇2 − 1

c2
∂2

∂t2

)(
∂A2

∂t

)
= −4πc∇ρ−

(
∇2 − 1

c2
∂2

∂t2

)
(c∇Φ). (9)

This equation can be solved in terms of the scalar potential Φ(L) in the Lorenz gauge:

A2(r, t) = c∇
∫ t

t0

[
Φ(L)(r, τ)− Φ(r, τ)

]
dτ, (10)

Φ(L)(r, t) =

∫
G(r, t|c|r′, t′)ρ(r′, t′)d3r′dt′. (11)

Thus, the full expression for the vector potential is:

A(r, t) = A(L)(r, t) + c∇
∫ t

t0

[
Φ(L)(r, τ)− Φ(r, τ)

]
dτ. (12)

This vector potential clearly satisfies (2) for any Φ:

∇2Φ+
1

c

∂

∂t
(∇ ·A) = ∇2Φ+

[
1

c

∂

∂t
(∇ ·A(L)) + (∇2Φ(L) −∇2Φ)

]
= ∇2Φ(L) − 1

c2
∂2

∂t2
Φ(L) = −4πρ. (13)

Because (12) is derived without using a gauge condition, it is valid for any gauge.
In the Appendix, we solve the vector potential using the method of Fourier transforms

to make the mathematics more transparent.

3 Gauge transformations of potentials, gauge invariance of
fields, and potentials in the velocity gauge

In this section, we show that our solution of the vector potential in (12) for any gauge has
two important properties that any two sets of potentials are related by a gauge transfor-
mation, and that the electric and the magnetic fields generated by the potentials are gauge
invariant.

Let us consider two set of potentials (Φ, A) in (12) and (Φ′, A′) listed below:

A′(r, t) = A(L)(r, t) + c∇
∫ t

t0

[
Φ(L)(r, τ)− Φ′(r, τ)

]
dτ. (14)
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Next, we define a gauge function χ(r, t) by

χ(r, t) = c

∫ t

t0

[
Φ(r, τ)− Φ′(r, τ)

]
dτ. (15)

Then these two sets of potentials are related by a gauge transformation via the gauge
function χ:

A′ = A+ c∇
∫ t

t0

[
Φ(r, τ)− Φ′(r, τ)

]
dτ = A+∇χ, (16)

Φ′ = Φ+
1

c

∂

∂t

(
c

∫ t

t0

[
Φ′(r, τ)− Φ(r, τ)

]
dτ

)
= Φ− 1

c

∂χ

∂t
. (17)

Because of the above two relationships, the electric and the magnetic fields are gauge
invariant:

E = −∇Φ′ − 1

c

∂A′

∂t
= −∇

(
Φ− 1

c

∂χ

∂t

)
− 1

c

∂(A+∇χ)

∂t
= −∇Φ− 1

c

∂A

∂t
, (18)

B = ∇×A′ = ∇× (A+∇χ) = ∇×A. (19)

It is important to note that the potentials (Φ,A) in (12) is just one gauge transformation
away from the Lorenz-gauge potentials (Φ(L),A(L)) via the gauge function Λ defined below:

A = A(L) +∇Λ, Λ(r, t) = c

∫ t

t0

[
Φ(L)(r, τ)− Φ(r, τ)

]
dτ. (20)

This gauge-transformation procedure was first used by Jackson to derive the vector poten-
tials in many gauges of interest [3]. Thus, the results of Jackson’s method totally agree
with our universal solution for the vector potential in (12). See also Refs. [12,14] for using
this procedure in their investigations.

Let us now apply (12) to the velocity gauge with a real parameter v ̸= 0 (the v-gauge).
In this gauge, the gauge condition and the equation for the scalar potential are, e.g.,
Refs. [3–6]:

∇ ·A(v) +
c

v2
∂Φ(v)

∂t
= 0, (21)

∇2Φ(v) − 1

v2
∂2Φ(v)

∂t2
= −4πρ. (22)

The solution for the scalar potential is,

Φ(v)(r, t) =

∫
G(r, t|v|r′, t′)ρ(r′, t′)d3r′dt′, (23)
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where the v-propagating Green function G(r, t|v|r′, t′) is obtained from (7)-(8) by substi-
tuting v for c. According to (12), the vector potential has the form:

A(v)(r, t) = A(L)(r, t) + c∇
∫ t

t0

[
Φ(L)(r, τ)− Φ(v)(r, τ)

]
dτ. (24)

This expression for the v-gauge vector potential was first derived by Yang [4, 6] using the
arguments that the electric and the magnetic fields are gauge invariant and propagate with
speed c from physical charge and current densities. (In Ref. [4], the velocity gauge was
called the α-Lorenz gauge, with v = αc.)

Later, Jackson [3] used the gauge-transformation procedure in (20) to derive the v-gauge
vector potential, producing the same result as in (24):

A(new) = A(L) +∇Λ(v), Λ(v)(r, t) = c

∫ t

t0

[
Φ(L)(r, τ)− Φ(v)(r, τ)

]
dτ. (25)

When the parameter v in the velocity gauge is imaginary in the form of v = ±iν with
any real value of ν ̸= 0, the gauge is called the generalized ν-Kirchhoff gauge [11]. The
gauge condition and the equation for the scalar potential are:

∇ ·A(νK) − c

ν2
∂Φ(νK)

∂t
= 0, (26)

∇2Φ(νK) +
1

ν2
∂2Φ(νK)

∂t2
= −4πρ. (27)

When ν = c, the ν-Kirchhoff gauge reduces to the original Kirchhoff gauge investigated
extensively by Heras [15]. It is obvious that (26)-(27) are a generalization of Heras’s idea
of extending v in the velocity gauge to include imaginary values. As a consequence, the ν-
Kirchhoff scalar potential can formally be expressed as the velocity-gauge scalar potential
with an imaginary propagation speed v = ±iν.

We use a simple example to see what the potential Φ(νK)(r, t) looks like. We assume a
single-frequency charge density of the form:

ρ(r, t) = ρ+(r)e
iωt + ρ−(r)e

−iωt, ρ−(r) = [ρ+(r)]
∗, (28)

where ∗ denotes the complex conjugate. We assume that the potential has the same time-
dependence:

Φ(νK)(r, t) = Φ
(νK)
+ (r)eiωt +Φ

(νK)
− (r)e−iωt, Φ

(νK)
− (r) = [Φ

(νK)
+ (r)]∗. (29)

If we use (28)-(29) in (27), we have(
∇2 − ω2

ν2

)
Φ
(νK)
± (r) = −4πρ±(r). (30)
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Hence, the solution for Φ(νK) that goes to zero at |r| → ∞ is:

Φ(νK)(r, t) =

∫
e−|ω/ν|R

R

[
ρ+(r

′)eiωt + ρ−(r
′)e−iωt

]
d3r′, (31)

where R = |r−r′|. When both ω, ν ≥ 0, the exponent of the positive-frequency component
is: iωt − |ω/ν|R = iω[t − R/(iν)], exhibiting an imaginary propagation speed of iν, first
suggested by Heras [15]. (The negative-frequency component is just the complex conjugate
of the positive-frequency component.)

4 Electromagnetic fields and their propagation in space, and
potentials in the Poincaré gauge

In this section, we examine the propagation of the fields generated by our potentials. The
electric and the magnetic fields E and B generated by the potentials in an arbitrary gauge,
Φ and A in (12), are:

E = −∇Φ− 1

c

∂A

∂t
= −∇Φ−

[
1

c

∂A(L)

∂t
+∇

(
Φ(L) − Φ

)]
= −∇Φ(L) − 1

c

∂A(L)

∂t
, (32)

B = ∇×
{
A(L)(r, t) + c∇

∫ t

t0

[
Φ(L)(r, τ)− Φ(r, τ)

]
dτ

}
= ∇×A(L). (33)

Because the potentials in the Lorenz gauge always propagate with speed c from the physical
charge and current densities ρ and J according to (11) and (6), the results in (32)-(33)
indicate that the fields always propagate with the speed c from the charge and current
densities ρ and J. We note that this statement is true for any scalar potential Φ.

From (32)-(33), two sets of potentials stand out: the potentials (Φ(L), A(L)) in the
Lorenz gauge and the potentials (Φ(G), A(G)) in the Gibbs gauge [16, 17] (also known as
the Hamilton or temporal gauge [1]):

Φ(G) = 0, A(G)(r, t) = A(L)(r, t) + c∇
∫ t

t0

Φ(L)(r, τ)dτ = −c

∫ t

t0

E(r, τ)dτ, (34)

−1

c

∂A(G)

∂t
= E, ∇×A(G) = −c

∫ t

t0

∇×E(r, τ)dτ =

∫ t

t0

∂B(r, τ)

∂τ
dτ = B. (35)

We note that A(G) is just the time-integration of the local, gauge-invariant electric field.
The vector potential in (12) also can be expressed as:

A(r, t) = A(G)(r, t)− c∇
∫ t

t0

Φ(r, τ)dτ = −c

∫ t

t0

[E(r, τ) +∇Φ(r, τ)] dτ. (36)
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This expression for the vector potential is most suitable for discussions of the potentials in
the Poincaré gauge next.

The Poincaré or multipolar gauge (e.g., [3, 18]) is defined by the gauge condition, r ·
A(P )(r, t) = 0, which is cast in the following form for the discussion of this gauge:∫ 1

0
r ·A(P )(ur, t)du = 0. (37)

The mathematics (but not the physical quantities) used here from (37) to (42) closely
follows the mathematics in eqs. (9.1)-(9.9) of Ref. [3]. From (36), (37) takes the form for
all t, ∫ 1

0

[
r ·E(ur, t) + r ·∇urΦ

(P )(ur, t)
]
du = 0. (38)

The integration over u can be done for the scalar potential as follows. We use the spherical
coordinates r = (r, θ, ϕ) to get∫ 1

0
r ·∇urΦ

(P )(ur, t)du =

∫ 1

0
r
∂Φ(P )(ur, θ, ϕ, t)

∂(ur)
du = Φ(P )(r, t)− Φ(P )(0, t). (39)

Thus, the scalar potential is,

Φ(P )(r, t) = −
∫ 1

0
r ·E(ur, t)du+Φ(P )(0, t). (40)

We then take gradient of the scalar potential to get (note: ∇ = ∇r):

−∇Φ(P )(r, t) = E(r, t)− 1

c

∂

∂t

∫ 1

0
r× uB(ur, t)du. (41)

We now use (41) in (36) to get the vector potential,

A(P )(r, t) = −
∫ t

t0

dτ

(
∂

∂τ

∫ 1

0
r× uB(ur, τ)du

)
= −

∫ 1

0
r× uB(ur, t)du. (42)

The above discussion shows that our universal vector potential (36) or (12) also works for
the Poincaré or multipolar gauge.

5 Conclusions

In conclusion, we have derived an analytic solution for the vector potential universally
valid for any gauge. This is done by solving the vector potential directly from Maxwell’s
equations for potentials without using a gauge condition. Of course, a gauge condition is
still needed to solve for a particular scalar potential. But as soon as the scalar potential
is solved, the vector potential in that gauge is completely determined by using the scalar
potential in (12) or (36).
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A Appendix: Solution of the vector potential in any gauge
by Fourier transforms

In this Appendix, we show that the method of Fourier transforms offers a simpler way of
obtaining the solution of the vector potential. Define the Fourier component Ã(k, ω) of
the vector potential A(r, t) by:

Ã(k, ω) =

∫
e−ik·r+iωtA(r, t)d3rdt, (A.1)

A(r, t) =
1

(2π)4

∫
eik·r−iωtÃ(k, ω)d3kdω, (A.2)

and similarly for the scalar potential Φ, etc. Thus, equations (2)-(3) become

k2Φ̃− ω

c
k · Ã = 4πρ̃, (A.3)

(
k2 − ω2

c2

)
Ã =

4π

c
J̃+ k

(
k · Ã− ω

c
Φ̃
)
. (A.4)

To solve for Ã, we first solve for k · Ã from (A.3) to get

k · Ã =
c

ω

(
k2Φ̃− 4πρ̃

)
. (A.5)

We then use (A.5) in (A.4) to have(
k2 − ω2

c2

)
Ã =

4π

c
J̃+ k

[ c
ω

(
k2Φ̃− 4πρ̃

)
− ω

c
Φ̃
]
=

4π

c
J̃− 4πc

ω
kρ̃+ k

c

ω

(
k2 − ω2

c2

)
Φ̃.

(A.6)
The solution for Ã is:

Ã =
4π

k2 − ω2/c2

(
J

c
− c

k

ω
ρ̃

)
+ c

k

ω
Φ̃ = Ã(L) + c

ik

−iω
(Φ̃(L) − Φ̃), (A.7)

which is exactly (12).
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