Should Any 3-Vector Be Considered to Spawn an Infinite Set of Related Vectors?

Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (December 20, 2024)

1 Problem

In [1] it is implied that any 3-vector $\mathbf{a} = a \,\hat{\mathbf{a}}$ should be considered to generate an infinite set of 3-vectors $\mathbf{A}_{\hat{\mathbf{b}}}$ in arbitrary directions described by unit vectors $\hat{\mathbf{b}}$ according to

$$\mathbf{A}_{\hat{\mathbf{b}}} = A_{\hat{\mathbf{b}}} \, \hat{\mathbf{b}}, \quad \text{where} \quad \mathbf{A}_{\hat{\mathbf{b}}} \cdot \hat{\mathbf{a}} = A_{\hat{\mathbf{b}}} \, \hat{\mathbf{b}} \cdot \hat{\mathbf{a}} = A_{\hat{\mathbf{b}}} \cos(ab) \equiv a, \quad i.e. \quad A_{\hat{\mathbf{b}}} = \frac{a}{\cos(ab)} \ge a. \quad (1)$$

Then, the original vector \mathbf{a} is the vector of minimum magnitude of the set of vectors $\{\mathbf{A}_{\hat{\mathbf{b}}}\}$. Does this mathematical construct make physical sense?

2 Solution

NO!

References

[1] J.J. Zhang and P.X. Wang, Transformation of phase velocity among inertial frames, Wave Motion **50**, 520 (2013), http://kirkmcd.princeton.edu/examples/GR/zhang_wm_50_520_13.pdf