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Abstract
In a Maxwellian view, an accelerator of charged particles converts electro-
magnetic field energy into mechanical energy of the particles. A conventional
accelerator based on a resonant cavity emphasizes interference between the
drive fields and the the spontaneous radiation fields (those fields radiated when
charged particles pass through an otherwise empty cavity). In this case the
interference term, and hence the particles’ energy gain, is linear with the drive
field. Particles can also extract positive mechanical energy from a drive wave
in free space, where the corresponding decrease in field energy occurs due to
interference between the drive fields and the radiated fields of the charged
particles as a result of their motion in the drive field. This viewpoint leads to
the conclusion that a focused laser pulse in vacuum (far from any matter) can
impart an energy gain ΔUmax ≈ γ0η

2mc2 to a free electron of initial Lorentz
factor γ0. This gain is quadratic in the strength η = eE0/mωc of the laser
field. A condition for maximal energy gain is that the Rayleigh range of the
laser focus be equal to the formation length γ2

0η
2λ, and consequently the max-

imal accelerating gradient varies inversely with electron energy. The maximal
energy gain can, in principle, be achieved with linearly or circularly polarized
laser beams with optical elements far from the laser focus, or with an axicon
beam where the optical elements form a laser cavity of length approximately
equal to the Rayleigh range.

1 Introduction

The development of tabletop teraWatt lasers has renewed interest in the use of lasers to
transfer energy to(accelerate) beams of electrons, as was first proposed by Shimoda in 1962
[1]. In particular, the highest electric fields can be obtained by short laser pulses focused in
vacuum, so the question arises as to what extent vacuum laser acceleration of free electrons is
possible. This topic has been a subject of debate for some years [2], and recently the vacuum
laser acceleration of electrons to 1 MeV has been reported [3]. Here, we give a qualitative
but general argument that identifies the dependence of energy transfer from a laser to an
electron on relevant dimensional quantities. This approach complements numerical analyses
that are typically based on approximate solutions to Mawell’s equations [4, 5, 6, 7].

The key principle is that any energy gained by an electron from a system of electromag-
netic fields must result from a corresponding decrease in the electromagnetic field energy.
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Furthermore, the decrease in field energy is due to interference between the drive fields of
the laser or electromagnetic cavity and the fields of the electron.

We are particularly interested in cases where the electron exhibits an energy gain after it
has ceased to interact with the drive fields. In general, the total electromagnetic field energy
can have been reduced only if a component of the radiation fields of the electron continues
to occupy the same volume as the drive fields (until possible absorption of these fields by
matter). The radiation fields include both the response fields induced by the motion of the
electron in the drive fields, as well as the “spontaneous” radiation due to the electromagnetic
interaction with the matter of the accelerating structure independent of the strength of the
drive fields.

The interference of the spontaneous radiation with the drive fields is therefore responsible
for that part of the acceleration which is linear in the strength of the drive fields. The
interference between the drive field and the response radiation is quadratic in the strength
of the drive field, and is usually neglected. However, in the case of vacuum laser acceleration
there is no spontaneous radiation, and the leading acceleration term is quadratic in the
strength of the laser field. The absence of vacuum laser acceleration that is linear in the
laser field strength has been called the Lawson-Woodward theorem [8, 9].

The use of an energy argument is convenient when discussing such processes as vacuum
laser acceleration, inverse Čerenkov acceleration, inverse transition radiation acceleration,
etc., for which a simple identification of the accelerating force is elusive (due in part to the
lack of an analytic solution to Maxwell’s equations for a focused laser beam).

Before exploring the case of vacuum laser acceleration in sec. 5, we first comment on
particle acceleration in a static electric field (sec. 2), in a resonant cavity (3ec. 3) and in a
plane electromagnetic wave (sec. 4).

2 Acceleration in a Static Field

The usual picture of acceleration in a static electric field of strength E0ẑ in the z direction
is that the Lorentz force F = eE0ẑ acting on a charge e over distance L imparts energy
ΔUe = eE0L to the charge.

Let us re-examine this case from a Maxwellian view that emphasizes field energy. When
the charge is at distance d from one of the electrodes that supports the field E0, the electric
field Ee of the charge can be obtained via the image-charge method. A short calculation in
cylindrical coordinates shows that the cross term (interference term) of the field energy is
(in Gaussian units),

Uint =

∫
E0ẑ · Ee(r)

4π
dVol

=
E0ẑ

4π
·
∫ (

er1

r3
1

− er2

r3
2

)
dVol

=
eE0

4π

∫ ∞

0

dz

∫ ∞

0

πdr2

(
z − L

[r2 + (z − L)2]3/2
− z + L

[r2 + (z + L)2]3/2

)
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=
eE0

4

∫ ∞

0

dz

⎛
⎝

⎧⎨
⎩

2 if z > L

−2 if z < L

⎫⎬
⎭ − 2

⎞
⎠

= −eE0

∫ L

0

dz = −eE0L, (1)

with geometry as shown in Fig. 1. When the particle has traversed a potential difference
V = E0L, it has gained energy eV and the field has lost the same energy.1

Figure 1: Electric charge e and its image charge −e at positions (r, θ, z) =
(0, 0,±d) with respect to a conducting plane at z = 0. Vectors r1 and r2 are
directed from the charges to the observation point (r, 0, z).

In a practical “electrostatic” accelerator, the particle is freed from an electrode at po-
tential −V and emerges with energy eV in a region of zero potential. However, the particle
could not be moved to the negative electrode from a region of zero potential by purely
electrostatic forces unless the particle lost energy eV in the process, leading to zero overall
energy change. An “electrostatic” accelerator must have an essential component (such as a
battery) that provides a nonelectrostatic force that can absorb the energy extracted from
the electrostatic field while moving the charge from potential zero so as to put the charge at
rest at potential −V prior to acceleration.

3 Acceleration in a Resonant Cavity

Consider a generic cavity with length L along the direction of motion of an electron, taken
to be the z axis. The cavity is excited with a field of amplitude E0 and wavelength λ � L.
Consequently, kL � 1, where k is the wave number. A practical accelerating cavity would
have entrance and exit apertures of radius a much smaller than the cavity length L, and
hence much smaller than λ.

The usual view is that an electron gains energy ΔUe ≈ eE0L when it traverses the
cavity with the appropriate phase. Let us see how this energy transfer is accounted for in a
Maxwellian view.

An electron passing through an otherwise field-free cavity will radiate “spontaneously”.
In the case of a cavity containing a drive field as well, the interference between the drive

1See also [11].
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field and the spontaneous radiation leads to energy transfers to the electron that are linear
in the drive field. So, we concentrate our discussion on the “spontaneous” radiation in the
cavity, and neglect the response (“stimulated”) radiation.

First, consider the spontaneous radiation of an electron as is passes through the aperture
in a metallic plate. In the limit of zero aperture radius, transition radiation arises, and the

spectrum would extend up to the γωP , where γ = 1/
√

1 − β2 is the Lorentyz factor of the
electron and ωP is the plasma frequency of the metal. For an aperture of finite radius a,
the radiation is simply that part of the transition radiation spectrum associated with radii
greater than a.

Transition radiation can be thought of in terms of the Weizsäcker-Williams approximation
[10]. As the electron suddenly emerges from the metal plate, its attraction to the image
charge causes an acceleration, and hence radiation, perpendicular to the plate. The spectrum
of the radiation is the Fourier transform of the pulse of electric field on the plate. At a radius
a from the trajectory of an electron with Lorentz factor γ, the radial electric field has strength
E ≈ γe/a2 and the pulse lasts for time ≈ a/γc, where c is the speed of light. Hence, the
spectrum extends up to wave number kmax ≈ γ/a, and the pulse energy is U ≈ E2 Vol
≈ γ2e2/a4 · a2 · a/γ = γe2/a. In effect, all of the pulse energy is radiated as transition
radiation, and so the pulse spectrum is,

dU

dk
≈ U

kmax

≈ e2. (2)

This result is independent of the radius a, and so applies to aperture radiation for all wave
numbers up to k ≈ γ/a when the metal plate has an aperture of radius a. Since in the
present case we seek interference between the aperture radiation and the cavity fields whose
wavelength is much larger than a, eq. (2) holds for the relevant part of the spectrum.

The basic result (2) is usefully re-expressed in terms of photons of angular frequency
ω = kc. The number n of photons radiated per energy interval is,

dn =
dU

�ω
≈ e2

�c

d�ω

�ω
= α

dω

ω
, (3)

where � is Planck’s constant and α = e2/�c is the fine-structure constant. Because this result
follows from the Weizsäcker-Williams approximation, it will characterize a large variety of
basic radiation process in addition to transition radiation. [We give examples later in the
paper....]

The cavity has a second metallic plate at distance L from the first. As the electron passes
through the aperture of the second plate, it again emits aperture radiation, whose spectrum
is identical to eq. (2), but whose maximum wave number is only 1/a for radiation in the
backward direction. This backward radiation can be thought of as the result of reflection
of part of the forward radiation from the second plate, and so has a 180◦ phase change
compared to the forward radiation. Also, because the electron passes through the second
aperture later than the first, there is a phase lag of,

Δϕ = kL

(
1

β
− cos θ

)
≈ kL

(
1 − cos θ +

1

2γ2

)
, (4)
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between the two radiation fields, where θ is the relevant angle of emission of the radiation, and
the approximation holds for relativistic electrons. To have the electric field vector parallel to
the z axis, we are interested in radiation for θ ≈ 90◦. Then, Δϕ ≈ kL � 1, and the radiated
electric field E1+2 from apertures 1 and 2 can be written as,

E1+2 = E1(1 − eikL) ≈ −ikLE1 ẑ. (5)

The spectrum of the spontaneous radiation into the cavity is then,

dU1+2 ≈ k2L2 dU1 = e2L2k2 dk. (6)

This energy excites the varies modes of the cavity, whose mode number density obeys,

dN ≈ Vol k2 dk, (7)

according to the Rayleigh-Jeans law. Hence, the energy Urad and electric field Erad radiated
into a single mode are related by,

Urad ≈ dU1+2

dN
≈ e2L2

Vol
≈ E2

radVol, (8)

and so,

Erad ≈ −i
eL

Vol
ẑ. (9)

Finally, we consider the interference term in the total field energy when the cavity is
driven by a wave of strength E0 in a particular mode, and find,

Uint ≈ (E0 · Erad)Vol ≈ −eE0,zL, (10)

for a suitable choice of phase of the drive field. Hence, as expected, the electron can extract
energy ΔUe ≈ eE0,zL from the cavity.

While the form of eq. (9) could have been anticipated on dimensional grounds, the more
detailed argument shows the basic connection between particle acceleration in cavities and
transition radiation. Since transition radiation arises when time dependent image charges
are present, the role of image charges add to the conceptual link between acceleration in
cavity fields and in static fields.

4 Acceleration by a Plane Wave

A plane wave can be approximated by the far zone of a spherical wave. The electric field
amplitude rises slowly to strength E0, then remains essentially constant for a long time,
before slowly returning to zero. Can such a wave transfer net energy to an electron?

The answer is negative, as perhaps first noted by di Francia [12] and by Kibble [13]. A
plane wave can, however, impart significant “temporary” acceleration to an electron when
the latter is overtaken by the wave [14, 15, 16], but in general the electron loses its temporary
energy gain on exiting the plane wave.
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Because the motion of an electron in a plane wave is well known, the relation between
the energy and momentum of the electron and of the field can be demonstrated in detail [17].
The oscillatory transverse momentum of the electron inside the plane wave is compensated by
the interference between the electric field of the wave and the Coulomb field of the electron.
The longitudinal momentum change and the energy gain of the electron while inside the
wave are compensated by the interference between the wave fields and the oscillating fields
of the electron. However, the relevant interference terms of the field energy and momentum
densities are significant primarily within one wavelength of the electron, rather than in the
far zone. Once the wave has passed the electron by, these near-zone interference terms
vanish, along with the “temporary” acceleration of the electron.

It is convenient to use the example of a plane wave to introduce an invariant measure of
whether the wave field is “strong” or “weak”. We define the dimensionless Lorentz invariant
η by,

η =
e
√〈AμAμ〉

mc2
=

eE0,rms

mωc
=

eE0,rmsλ

mc2
, (11)

where A is the four-vector potential, the average is with respect to time, m is the mass of
the electron and ω = kc is the angular frequency of the wave. For weak fields, η � 1.

When a slowly modulated plane wave overtakes an electron, the latter oscillates trans-
versely to the wave vector k. The case of circular laser polarization is simpler. In its
longitudinal (or average) rest frame the electron moves in a circle in the transverse plane
characterized by Lorentz factors,

γ�
⊥ =

√
1 + η2, β�

⊥ =
η√

1 + η2
, (12)

where quantities measured in this frame are denoted with the superscript �. Thus, the
transverse motion is relativistic for large η. For linear polarization, the motion is a “figure
8” [14] where γ�

⊥ and β�
⊥ vary over a cycle with average values given by (12).

An electron that is overtaken by a slowly modulated plane wave also takes on a “tempo-
rary” longitudinal velocity [13, 15, 16] described by Lorentz factors,

γ‖(γ‖β‖) =
γ0{1(β0) + η2[1 + β0]/2}√

1 + η2
, (13)

where β0 = v0,z/c and γ0 = 1/
√

1 − β2
0, which apply to the electron’s motion prior to

the arrival of the wave, assumed to be parallel to the axis of the beam. To a reasonable
approximation,

γ‖ ≈ γ0

√
1 + η2, (14)

which for strong fields becomes γ‖ ≈ γ0η.
The “drift velocity” β‖ of the electron inside the laser beam also follows from eqs. (13),

β‖ =
β0 + η2(1 + β0)/2

1 + η2(1 + β0)/2
. (15)

For an electron initially at rest, β‖ = η2/(2 + η2), so that if, in addition, the field is weak,
β‖ ≈ η2/2.
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The (invariant) amplitude r⊥ of the transverse oscillation of an electron inside the wave
is,

r⊥ =
ηλ�√
1 + η2

≈ 2ηγ‖λ√
1 + η2

≈ γ0ηλ. (16)

A very useful concept that emerges from considerations of plane waves is the effective
mass of the electron [13],

m = γ�
⊥m = m

√
1 + η2. (17)

When one wishes to average over the oscillatory transverse motion of an electron in the wave,
this can be conveniently done by absorbing the transverse energy into the effective mass,
with the stated result. The effective energy,

Ueff = mc2 = mc2
√

1 + η2, (18)

is then the total energy of the electron in a frame where the electron has zero longitudinal
velocity (inside the wave).

For situations in which the electromagnetic wave is well approximated by a plane wave
with with a slowly modulated amplitude, the effective energy (18) can be used to characterize
the average behavior over a wave period of an electron as it enters and leaves the wave. For
weak fields (η � 1), the effective energy is, to within a constant,

Uponderomotive ≈ mc2η2

2
, (19)

and is called the ponderomotive potential [13, 18]. Associated with this is an effective force,

Feff = −∇Uponderomotive = −mc2

2
∇η2, (20)

which indicates that an electron is repelled from the high-field region of the wave.

5 Vacuum Laser Acceleration

By vacuum laser acceleration we mean energy gain of an electron that interacted with a laser
beam in vacuum, and where any mirrors or lenses that define the laser beam are at distances
large compared to the Rayleigh range from the focus.

5.1 Properties of Focused Laser Beams

We consider a configuration suitable for vacuum laser acceleration such as that illustrated
in Fig. 2.

An axially symmetric laser beam of central wavelength λ is focused to a waist of radius
w0. Asymptotically, the beam occupies a cone of half angle θ0 given by,

θ0 =
λ

πw0
=

2

kw0
(21)
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Figure 2: Scheme for vacuum laser acceleration of an electron by a laser pulse of length τ
that is focused from the left to a waist of radius w0 and has a Rayleigh range z0 = πw2

0/λ.
An electron initially near the laser focus (left side of figure) is accelerated to the right and
eventually falls behind the laser pulse in the far-field region (right side of figure).

which we also call the diffraction angle. The depth of focus is characterized by the Rayleigh
range,

z0 =
w0

θ0
=

πw2
0

λ
=

2

kθ2
0

. (22)

The characteristic values w0 and θ0 are twice the standard deviations of the corresponding
Gaussian distributions of the laser intensity near the focus, and in the far field, respectively.

In this section and in secs. 5.3-5 we consider the fundamental Gaussian mode of a linearly
or circularly polarized laser beam. In our initial discussion, the laser pulse is “short”, meaning
that its pulse length τ obeys cτ < z0, where c is the speed of light.

The laser pulse overtakes an electron of negligible initial velocity in the vicinity of the laser
focus. Much later, the laser pulse has advanced well beyond the electron and the Coulomb
fields of the electron no longer interfere with those of the laser pulse. This situation is
indicated schematically on the right side of Fig. 2, in which the center of the laser pulse is
at distance r � z0 from the focal point.

We denote the peak electric field of the laser pulse at the focus by E0, and the electric
field on the optic axis at distance r from the focus by Elaser(r). At a point r = (r, θ, φ), the
far field of the laser is,

Elaser(r, t) = Elaser(r)e
−θ2/θ2

0g(ϕ)eiϕ, (23)

where the phase ϕ is kr − ωt and g is the pulse envelope function of characteristic width
ϕ0 = cτ/λ, with g(0) = 1 and g(±∞) = 0. A useful approximation to the laser pulse shape
is,

g(ϕ) = sech(ϕ/ϕ0). (24)

The energy Ulaser in the laser pulse is the same at the focus and at distance r, and
proportional to the square of the field strength times the pulse volume in the simplest
approximation,

Ulaser ≈ E2
0w

2
0cτ ≈ E2

0θ
2
0z

2
0cτ ≈ E2

laser(r)r
2θ2

0cτ . (25)
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We suppress numerical factors such as 1/4π throughout this paper. The first forms of (25)
can also be rewritten in terms of the dimenionless parameter η defined in (11) as

Ulaser ≈ η2mc2 z0

re

cτ

λ
, (26)

where re = e2/mc2 is the classical electron radius.
From (25) we also conclude that the electric field strength of the laser far from the focus

is related by,

Elaser(r) ≈ z0

r
E0e

iΔϕ, (27)

for θ <∼ θ0, where the phase shift Δϕ between the far laser field and the field at the focus is
not yet determined.

5.1.1 The Gouy Phase Shift

The phase shift can be found by an inverse application of Kirchhoff diffraction theory, in
which a field component Ei(x) near the laser focus is reconstructed from the far field Ei(r)
[19],

Ei(x) ≈ ik

2π

∫
S

e−iks

s
Ei(r) dArea, (28)

where s is the magnitude of the vector r − x.
For example, a laser beam that is linearly polarized along the x axis has far field Ex(r)

given by eq. (23), and a longitudinal component Ez(r) ≈ −θ cosφEx(r) so that the field E
is transverse to the radius vector r. Then, eq. (28) leads to the forms,

Ex = E0fge−f�2

eiϕ, Ez = −iθ0fξEx, (29)

where E0 is the peak electric field at the focus, and,

f =
1

1 + iζ
=

1 − iζ

1 + ζ2 =
e−i tan−1 ζ√

1 + ζ2
, (30)

in terms of the normalized spatial coordinates ξ = x/w0, υ = y/w0, �2 = ξ2 + υ2 = ρ2/w2
0

and ζ = z/z0. The fields given by eq. (29) satisfy Maxwell’s equations with the neglect
of terms of order θ2

0 [20], and supposing that g′/g � 1, i.e., that the pulse width is large
compared to a single cycle.

The phase, − tan−1 z/z0, of function f is known as the Gouy phase [21], and implies a
90◦ phase shift between the far field of the laser beam where f ≈ −iz0/r and the center of
the focus, half of which shift occurs within one Rayleigh range of the focus. Thus, eq. (27)
can now be written as,

Elaser(r) ≈ −i
z0

r
E0. (31)
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5.1.2 Phase and Group Velocity

The total phase ϕtot of the wave is,

ϕtot = kz − tan−1 z

z0
+

ρ2zz0

w2
0(z

2 + z2
0)

− ωt

≈ kz − z

z0
+

ρ2z

w2
0z0

− ωt, (32)

where ρ2 = x2 + y2 and the approximation holds for ρ < w0 and |z| < z0. Near the focus we
can identify an effective wave number keff given by,

keff ≈ k − 1

z0
+

ρ2

w2
0z0

=
ω

c

[
1 − θ2

0

2

(
1 − ρ2

w2
0

)]
, (33)

noting that 1/z0 = kθ2
0/2. Hence, the phase velocity, vp = ω/keff , exceeds the speed of light

whenever the transverse position ρ of the electron is less than the waist w0. This is not ideal
for energy transfers between wave and electron. However, when discussing energy, it is more
relevant to consider the group velocity of the laser beam, vg = dω/dkeff .

In eq. (33), the optical parameters θ0 and w0 depend on the frequency, in general. If the
optical transport system fixes the diffraction angle θ0, then the waist varies with frequency

according to w0 = 2c/ωθ0 and the group velocity is vg = c/[1 − θ2
0

2
(1 − 3ρ2/w2

0)]. If instead
the waist is fixed, then,

vg =
c

1 + θ2
0

2

(
1 − ρ2

w2
0

) ≈ c

[
1 − θ2

0

2

(
1 − ρ2

w2
0

)]
. (34)

In the latter case, the group velocity is less than c near the focus, and seems to be the
physically reasonable case.

Part of the complexity of vphase and vgroup is due to the fact that energy and momentum
flow transversely as well as longitudinally in a focused laser beam. If we also define a velocity
vflow of the energy flow only along, the z direction, we can obtain this by averaging vgroup

over ρ. Assuming expression (34) vgroup is valid for ρ ≤ w0, we find,

vflow =
c

1 + θ2
0/4

≈ c

(
1 − θ2

0

4

)
. (35)

The same result is found far from the focus by averaging vz = c cos θ. See also Ref. [22].

5.1.3 The Formation Length

In our Maxwellian perspective we will be concerned with the electromagnetic radiation of an
electron in a laser focus. A useful concept is the formation length, the distance over which
the radiation moves one wavelength ahead of the electron, after which the radiation can be
considered to be separate from the electron.
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An electron inside a wave has longitudinal velocity β‖ that differs from its initial longi-
tudinal velocity β0 according to eq. (15). Then, the formation length is given by,

Lformation =
λ

1 − β‖
≈ γ2

‖λ

2
≈ γ2

0(1 + η2)λ. (36)

For a strong laser beam with η � 1, the formation length is,

Lformation ≈ η2γ2
0λ. (37)

5.2 General Remarks on Laser Acceleration

5.2.1 A Constraint on z0

We first note a constraint that arises when it is desired that an electron interact with a
laser beam near its focus. According to eq. (16), the amplitude r⊥ ≈ γ0ηλ of the transverse
oscillation of an electron of initial Lorentz factor γ0 in a wave could be larger than the waist
w0 of the laser beam. In that case, the electron would exit the side of the laser pulse and
be effectively lost from the accelerated electron beam. To avoid this, the laser waist should
satisfy w0

>∼ γ0ηλ, and hence the Rayleigh range should obey z0
>∼ γ2

0η
2λ Since z0

>∼ λ
for any pratical focusing optics, this provides little constraint on weak laser fields. But for
strong fields with η � 1, this constraint can be usefully written z0

>∼ Lformation, according
to eq. (37). If the Rayleigh range is less than a formation length, the interaction between a
strong wave and electron, and hence any laser acceleration, would be reduced by z0/Lformation.

On the other hand, if the Rayleigh range is longer than a formation length, the electron
slips past the crest of the electromagnetic wave, and the acceleration would, in general, be
less. Hence, we conclude that,

z0 ≈ Lformation (38)

is desirable for laser acceleration in strong fields.

5.2.2 An Estimate of Maximal Laser Acceleration

The distance over which a focused laser pulse is intense is roughly the Rayleigh range z0. For
a peak electric field E0, the maximum energy that could be transferred to a charge e over
this length is ΔUmax ≈ eE0z0. However, laser pulses have largely transverse electric fields,
so this maximum is not readily achieved. The peak component of the electric field along the
optical axis is of order θ0E0 = w0E0/z0. Therefore, a better estimate is,

ΔUmax ≈ eE0θ0z0 = eE0w0 =
w0

λ
ηmc2. (39)

We add to this the constraint (38) that the Rayleigh range be the formation length for
best acceleration. For a strong field, this implies that w0 ≈ γ0ηλ, so we obtain,

ΔUmax ≈ γ0η
2mc2. (40)

We will find below in secs. 5.5-6 that energy transfers of this order can be achieved
with an “axicon” focus laser beam, provided the mirrors that create this focus are located
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approximately at ±z0 about the focal point. This form of laser acceleration is, therefore,
not what we have called vacuum laser acceleration, but (as we will see) depends on the
interference of the laser beam with the transition radiation from the electron.

Can the energy gain (40) be achieved in a vacuum laser acceleration configuration, with
all optical media far from the laser focus? An optimistic answer is suggested by an argument
analagous to Budker’s view of acceleration in a pulsed helical delay line (can we give a
reference?), and confirmed by the Maxwellian argument in sec. 5.4.

5.2.3 The Snowplow Model

Near the focus, the energy in the laser pulse flows with a velocity slightly less than the speed
of light. If this pulse of energy overtakes an electron, the electron can be pushed forward
by the ponderomotive force (20) and experience a net energy gain. Consider this in the rest
frame of the energy flow of the laser pulse, in which the electron initially approaches the
pulse. If the energy of the electron in this frame is less than the ponderomotive potential of
the pulse, the electron is reflected elastically, and moves away from the pulse. Back in the
lab frame the electron ends up with a large energy.

This argument does not apply to plane waves, whose energy flow velocity is the speed of
light. In this case, the plane wave eventually passes over any electron in its way, and the
trailing edge of the wave decelerates the electron back to its initial velocity.

We saw in eqs. (34)-(35) that the group velocity near the focus of the fundamental mode
of laser beam is a function of the radius, with an average value of,

βg ≈ 1 − θ2
0

4
. (41)

The corresponding Lorentz factor is,

γ2
g ≈ 2

θ2
0

= kz0. (42)

According to this view, there is a possibility of accelerating an electron provided the group
velocity of the laser focus exceeds the longitudinal velocity of the electron. Equivalently, we
require that,

γg > γ0, (43)

where γ0 is the initial Lorentz factor of the electron, which is assumed to have initial velocity
along the laser beam.

For a relativistic electron that satisfies condition (43), its energy U� in the rest frame of
the laser group velocity is U� = γ�mc2 = γgγ0(1−βgβ0)mc2 ≈ γgγ0(1−β0)mc2 ≈ γgmc2/γ0.
If the electron were initially at rest, then γ0 = 1 and its energy in this frame would be
U� = γgmc2 = γgmc2/γ0.

If the electron is to be reflected from the wave, its longitudinal velocity must be reduced
to zero before it penetrates to the center of the focus. Thus, its energy U� must be less
than the ponderomotive potential, i.e., the effective energy (18) of transverse motion of an
electron with zero longitudinal velocity at the laser focus. Hence, we need,

√
1 + η2 >∼

γg

γ0

> 1. (44)

12



This cannot be satisfied for a weak field with η � 1. We expect significant vacuum laser
acceleration only for strong laser fields that satisfy,

η2 >∼
γ2

g

γ2
0

≈ kz0

γ2
0

, (45)

or equivalently, z0
<∼ Lformation.

We saw in sec. 5.2.1 that the amplitude of the transverse oscillation of the electron
will be larger than the laser waist, and consequently ejected sideways from the laser focus,
unless z0

>∼ Lformation. Comparing with the above, we again conclude that we should have
z0 ≈ Lformation for best laser acceleration, which is equivalent to the requirement that,

kz0 ≈ γ2
0η

2. (46)

In the group-velocity frame, the velocity of the electron is reversed by the wave, but the
Lorentz factor γ� remains the same. Back in the laboratory frame, the final Lorentz factor
of the electron is,

γf ≈ 2γgγ
� ≈ γ2

g

γ0

≈ kz0

γ0

≈ η2γ0. (47)

The energy gain of the electron is,

ΔUe = (γf − γ0)mc2 ≈ γ0η
2mc2 (48)

This saturates the estimate (40), and suggests that a configuration for vacuum laser accel-
eration exists.

5.2.4 Laser Energetics

The energy gain formula (40) is noteworthy in that the gain is a multiplicative factor, rather
than additive as is the case for acceleration in an rf cavity of fixed length. However, to
achieve the gain (40), the Rayleigh range and formation length must increase with the input
electron energy according to eq. (37). Therefore, the energy gradient,

ΔUmax

z0
≈ mc2

γ0λ
, (49)

falls off with increasing electron energy, and the process of laser acceleration will be less
efficient at higher energies.

We elaborate on this issue by considering the required energy in the laser pulse.
For a laser focus with z0 ≈ Lformation, the main part of the acceleration occurs while only

a single cycle of the laser beam overtakes the electron. The volume of the laser pulse near
its focus could then be as little as w2

0λ ≈ z0λ
2, with minimum pulse energy,

Ulaser,min ≈ E2
0z0λ

2 =
z0

re
η2mc2 ≈ γ2

0η
4 λ

re
mc2

≈ γ2
0η

410−5 J, (50)
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where the numerical value is for an optical laser. Then, eq. (40) can also be written as,

ΔUmax ≈ γ0re

z0

Ulaser,min ≈ re

γ0η
2λ

Ulaser,min, (51)

which also shows how the efficiency of acceleration decreases at higher electron energies.
As a numerical example, consider a laser focus with η = 3. Then, according to eq. (50),

Ulaser,min ≈ γ2
010

−3 J, (52)

Such a laser could increase the electron energy by a factor of 10 at a single focal point. The
pulse energy needed to accelerate an electron from rest to γ = 10 is only 1 mJ, while the
jump from γ = 10 to 100 would require 100 mJ, and the jump from γ = 100 to 1000 would
require 10 J, etc.

The above estimates are based on the assumption of essentially single-cyle laser pulses.
If it is more practical to deliver multicycle laser pulses, the pulses energies to achieve the
maximal gain (40) are correspondingly larger. It will require a very large laser system to
accelerate an electron to energies beyond 1 GeV.

5.2.5 Electron Beam Stability

For laser acceleration to be the basis of a practical electron accelerator, it must accelerate a
bunch of electrons in a manner that retains a usable bunch structure. This will require some
care, as the process of laser acceleration tends to disperse the bunch both longitudinally and
transversely.

The gain formala (40) indicates that an energy spread Δγ0 of the input electron bunch is
magnified to η2Δγ0 during laser acceleration. This contrasts with acceleration in an rf cavity,
where the energy spread in unchanged. The relative energy spread, Δγ/γ, is unchanged by
laser acceleration, while it is reduced by acceleration in an rf cavity.

During laser acceleration, electrons will experience transverse momentum kicks of order
γ�
⊥β�

⊥mc = ηmc in the longitudinal rest frame of the electron, recalling sec. 4. Transverse
momentum is a relativistic invariant, so this holds in the laboratory frame as well. Since
mc = 0.511 MeV/c, this defocusing effect is relatively modest for moderate values of η, but
will require compensation via a set of focusing magnets between stages of laser acceleration.

Focusing of the electron beam could also be provided by a solenoid magnet coaxial with
the optic axis. In principle, the cyclotron frequency could be matched to the laser frequency,
both measured in the average rest frame of the electrons. Then, interference between the
spontaneous radation of the electron in the solenoid field and the radiation induced by the
laser would lead to an additional acceleration, linear in the laser field strength. This concept
is the basis of invserse-free-electron-laser acceleration.

5.2.6 The Maxwellian View

In the Maxwellian view, the energy gain of an electron that interacts with a laser beam is
the negative of the interaction energy between the laser beam and the induced radiation of
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the electron. We evaluate this far from the laser focus as,

Uint =
1

2π
Re

∫
E�

laser(r) · Erad(r) dVol

≈ Re

∫
fixed r

dArea

∫
E�

laser(r, t) · Erad(r, t) d(ct). (53)

The radiated electric field is given by the Liénard-Wiechert equation,

Erad(r, t) =
e

c

⎡
⎣ ŝ×

{
(ŝ− β) × β̇

}
(1 − β · ŝ)3s

⎤
⎦

ret

, (54)

where s = r − x is the vector from the source point x to the observation point r, and the
quantity in brackets is evaluated at the retarded time t′ = t− s/c. The far field of the laser
is given by eq. (23), where we now write Elaser(r) = Elaser(r)e

−θ2/θ2
0.

We change the variable of integration in eq. (53) from t to t′, noting that dt = dt′[1 −
β(t′) · ŝ], to find,

Uint ≈ e

2πc
Re

∫
dArea

Elaser(r)

s

∫
g(ϕ)e−iϕ ŝ× [(ŝ− β) × β̇]

(1 − β · ŝ)2
d(ct′). (55)

This can be integrated by parts using the relations,

ŝ× [(ŝ− β) × β̇]

(1 − β · ŝ)2
=

d

dt′

[
ŝ × (ŝ × β)

1 − β · ŝ
]

(56)

and dϕ/dt′ ≈ −ω(1 − β · ŝ), giving,

Uint ≈ Re
ik

2π

∫
dArea

eElaser(r)

s

∫
[g(ϕ) + ig′(ϕ)]e−iϕ[ŝ(ŝ · β) − β] d(ct′). (57)

The Gaussian beam described by eq. (29) satisfy Maxwell’s equations only if g′/g is negligible,
so we ignore the term in g′ eq. (57).

To a good approximation, Elaser · ŝ = 0. Then, using the inverse diffraction integral (28),
we find,

Uint ≈ −Re

∫
eElaser(x, t′) · v dt′, (58)

where v = dx/dt′ is the velocity of the electron. Thus, the interference energy is indeed the
negative of the energy gain of the electron in the laser field.

The Maxellian view gives us the option of evaluating the energy gain of the electron via
the interference term (53) in the far field, as an alternative to direct evaluation of eq. (58)
near the laser focus.
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5.3 Acceleration by a Weak Laser

We begin our discussion of laser acceleration from the Maxwellian viewpoint with the case
of a weak laser beam with η � 1 and pulse length τ such that cτ <∼ z0 ≈ λ/θ2

0. The electron
is initially at rest. For simplicity, we consider an electron initially on the optic axis, with
|z| <∼ z0

According to the snowplow model of sec. 5.2.3, we expect no acceleration here, since the
energy of the electron in the group-velocity frame is U� = γgmc2 =

√
2mc2/θ0, which is less

than the the ponderomotive energy mc2
√

1 + η2 ≈ mc2(1 + η2/2) so long as θ0 <
√

2/2. In
this case, the laser pulse passes over the electron, and the latter is decelerated back to zero
velocity by the trailing edge of the pulse.

While the electron is inside the laser pulse, it radiates electromagnetic waves, and takes
on longitudinal velocity β‖ ≈ η2 according to eq. (15). The longitudinal displacement is

roughly Δz ≈ η2cτ <∼ η2λ/θ2 < λ. The amplitude of transverse oscillations is ηλ according
to eq. (16), which is also less than λ for a weak laser field.

Even when the laser pulse has passed the electron, the radiation fields of the electron
still interfere with the laser pulse. For weak lasers fields, the radiation fields of the electron
can be approximated as due to electric dipole radiation when the electron was at its initial
position, since the electron moves less than a wavelength as the pulse passes by. The second
time derivative of the electric dipole moment d of the electron is related by,

d̈(x, t) = eẍ ≈ e2

m
E(x, t) = c2reE(x, t), (59)

where x is the position of the electron. The radiation field Erad(r, t) of the electron at position
(r � z0, θ ∼ θ0, φ) in a spherical coordinate system is obtained from d̈ when evaluated at
the retarded time,

t′ = t − |r − x|
c

≈ t− r − r̂ · x
c

= t − r

c
+

z cos θ

c

≈ t +
z

c
− r

c
− zθ2

2c
. (60)

The total phase of Erad is then found from eq. (32) to be,

ϕtot ≈ kr − ωt − z

z0
+

kzθ2

2
(61)

In calculating the interference between the radiated field and the laser field, we average over
angle θ, weighting by the electric field of the laser beam in the far zone, which has the effect
of replacing θ in (61) by θ0. Since z0 = 2/kθ2

0, the averaged phase of the radiation is just
〈ϕtot〉 = kr − ωt. A similar, but more intricate calculation yields the same result if the
electron is initially off the optic axis.

Since the dipole moment is essentially orthogonal to the wave vector in the far-field region
of the laser pulse, the far radiation field for θ <∼ θ0 is,

Erad(r, t) =
(d̈(x, t′) × k̂) × k̂

c2r
≈ − d̈(x, t′)

c2r
= −re

r
E(x, t′)
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≈ −re

r

E0√
1 + z2/z2

0

= − eη

rλ

Ê0√
1 + z2/z2

0

, (62)

where,

ϕrad(ρ, z) ≡ z

z0

(
1 − ρ2

w2
0

)
, (63)

where we have suppressed the phase ϕ = kr − ωt.
This result implies that radiation emitted by an electron near the laser focus is 90◦ out

of phase with the laser field in the far zone, eq. (31), since the laser field experiences the
Gouy phase shift between the focus and far zone (associated with the focal spot having finite
transverse extent), while the radiation from a point electron does not.

Therefore, there is no interference between the laser field and the radiation from the
electron in the far zone. The electromagnetic field energy is constant (neglecting the small
amount of energy in the radiation fields themselves), and so the mechanical energy of the
electron must be constant (with the neglect of the small radiation reaction).

We have neglected the radiation fields caused by the longitudinal field, Ez, of eq. (29).
The polarization of this radiation is radial, and so it does not contribute to interference with
the far field of the laser beam after integration over azimuth, for any polarization of the
laser in its fundamental mode. Hence, the longitudinal component of the fundamental laser
mode cannot contribute to vacuum laser acceleration. We consider laser modes matched to
the radiation caused by the longitudinal component of the laser field in secs. 5.5-7.

Thus, the Maxwellian view confirms the prediction of the snowplow model that there is
no acceleration of an electron by a weak laser field.

5.4 Acceleration by a Strong Laser

In a strong laser field (η >∼ 1), the radiation of the electron is considerably modified. The
transverse motion of the electron is relativistic, and the frequency spectrum of the radiation
is dominated by higher harmonics. The case of circular laser polarization is simpler. In its
longitudinal rest frame (boost = γ‖), the electron moves in a circle in the transverse plane,
and the radiation can then be called synchrotron radiation. In this frame, the transverse
motion can be characterized by Lorentz factors (12), and so is relativistic for large η. For
linear polarization, the motion is a “figure 8” [14] where γ⊥ and β⊥ vary over a cycle with
average values given by (12).

We are only interested in the strength of the electric field at frequency ω, as only this
component can interfere with the far laser field. [Strictly, this statement implies that the
interference extends over many cycles so that the interference between frequencies ω and nω
averages to zero for n > 1. But we will eventually see that in practice the interference region
is less than one wavelength long, so higher harmonics are not totally negligible.]

From eq. (74.9) of Ref. [14] with harmonic number n = 1, we have that the total power
radiated at frequency ω by an electron in circular motion is,

dU�
ω

dt�
≈ e4E�2

laser

γ�2
⊥ m2c3

=
e4E�2

laser

m2c3(1 + η2)
, (64)
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in the longitudinal rest frame of the electron, since the Bessel functions have values of order
unity in this case. The radiated power is a Lorentz invariant, and the electric field transforms
as E� = γ‖(1 − β‖)E ≈ E/γ‖. Hence, in the lab frame we have

dUω,source

dt
≈ e4E2

laser, source

γ2
‖m

2c3(1 + η2)
, (65)

for the radiation rate measured at the source. An observer in the far field near the optic
axis detects a rate that is higher than (65) by a factor 1/(1 − β‖) ≈ γ2

‖ because the electron
is moving with speed β‖ towards the observer. Thus,

dUω,far

dt
≈ e4E2

laser, source

m2c3(1 + η2)
≈ e2η2c

λ2(1 + η2)
. (66)

We can now estimate the strength of the radiated electric field in the far field by noting
that the radiation pattern lies within a cone of half angle θ ≈ 1/γ‖. The energy at frequency
ω contained within a pulse of duration Δt as observed in the far field is,

ΔUω,rad ≈ E2
ω,rad(r)r

2θ2cΔt ≈ E2
ω,rad(r)r

2cΔt

γ2
‖

≈ e2η2cΔt

λ2(1 + η2)
, (67)

using eq. (66). Hence,

Eω,rad(r) ≈ − γ‖eηe−iΔϕ

rλ
√

1 + η2
≈ −γ0

eη

rλ
e−iΔϕ, (68)

using (14), where the phase Δϕ between the radiated field and the laser field in the far zone
is not yet determined. In the weak-field limit, eq. (68) agrees with eq. (62). This suggests,
but does not prove, that Δϕ is zero...

More work on the phase factor needed here....
We can now calculate the interference energy between the radiation from the electron

and the far field of the laser beam, similarly to eq. (57). For a strong wave, we saw that
θ0 ≈ 1/γ‖ ≈ 1/γ0η. Also, we have noted in sec. 5.2.1 that the Rayleigh range should be
approximately the formation length. This has the consequence that the radiation from the
electron has extent of only cτ ≈ λ. Then, we find,

Uint ≈ − λ

γ2
0η

2
γ0E

2
0z0reΔϕ = −γ0η

2Δϕmc2. (69)

The energy gain of the electron is then,

ΔUe ≈ γ0η
2Δϕmc2, (70)

which is the maximal energy gain estimated in eqs. (40) and (48), to within the phase factor
Δϕ.
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If we accept the conjecture that Δϕ is given by eq. (63), then we conclude that the
maximal acceleration occurs for an electron that moves with the wave at distance z0 ahead
of the peak of the pulse.

More work needed to clarify this.....
10/11/10 For snowplow acceleration, don’t want electron to pentrate all the way to the

center of the laser pulse. Suppose it only penetrates to z ≈ z0. The Gouy phase here is about
1 radian, which is not too far out of phase with the far fields. So, there can be considerable
interference between radiation and the far laser field.

However, for strong acceleration, the radiation is so strong (????) that the electron
doesn’t actually gain much net energy.....

Must recall that radiation is like synchrotron radiation, γ2, and lasts for time of order
z0/c.....

A result that appears to be very similar to this has been reported by Wang et al.[7] on
the basis of a numerical calculation.

5.5 Acceleration by an Axicon Laser Mode

In secs. 5.1-4 we assumed that the electron’s trajectory lies along the optic axis of the laser
beam. This implies that eventually the electron would pass through the lens or mirrors that
shape the laser beams. This might be awkward in practice, especially for an intense beam
of electrons. Therefore, it is natural to consider configurations in which the the optic axis
of the laser makes an angle θ1 > θ0 to the electron beam. If a second laser beam is added
at angle −θ1 and properly phased with respect to the first laser beam, the electric field on
axis can be made purely longitudinal, which appears to be desirable [24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34].

Such a configuration of laser beams is sometimes called an axicon-focus beam, the ide-
alized version of which is a cylindrical Gaussian laser mode [9, 35, 36, 37]. In general, such
modes exist with two polarizations of the transverse electric field, radial and azimuthal.

In notation like that of eqs. (29-30), the simplest radially polarized mode, the (0,0) mode,
is (to first-order in the diffraction angle θ0),

Eρ = �F0, Eφ = 0, Ez = iθ0(1 − f2�2)F0, (71)

where,

F0 = E0
e−�2/(1+ζ2)g(ϕ)

1 + ζ2 ei(ϕ−2 tan−1 ζ), (72)

f = 1/(1 + iζ) and ϕ = kz − ωt.
The (0,1) cylindrical mode with radial polarization is,

Eρ = �F1, Eφ = 0, Ez ≈ iθ0F1, (73)

where,

F1 =

(
1 − �2

1 + ζ2

)
eiφF0, (74)
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and φ is the azimuthal angle about the z axis. The (0,1) azimuthally polarized cylindrical
mode is,

Eρ = 0, Eφ = �F1, Ez = −θ0F1/2. (75)

In all three modes listed the transverse fields vanish on the z axis, and the Gouy phase shift
between the focus and the far field is 180◦. The longitudinal field at the focus is 90◦ out
of phase with the far transverse field for the case of radial polarization, but is in phase for
azimuthal polarization.

If such a laser beam encounters an electron lying on the z axis, the latter will be acceler-
ated by the field Ez, leading to radiation fields with radial polarization. Hence, there would
be no interference between the radiation fields of the electron and the far fields of an az-
imuthally polarized laser beam. In turn, this implies that the acceleration is only temporary
and does not result in any net transfer of energy to the electron.

The polarization of the radiation is matched to that of the radially polarized mode, but
the radiation is aways exactly 90◦ out of phase with the far field of the laser beam. Again
there can be no net energy transfer from the laser beam to the electron. This result can also
be deduced from direct integration of the equation of motion of the electron over an infinite
path length for arbitrary phasing of the electron compared to the laser beam (see eq. (76)
[9, 31]). Another explanation for this null result is that since the phase velocity of the laser
beam exceeds the speed of light, the wave always slips past the electron over a long enough
path so as to cancel any temporary energy transfer.

These conclusions hold whether the electron is relativistic or nonrelativistic, and whether
the laser field is weak or strong, in contrast the the more complex case of the fundamental
laser mode. The conclusions are unchanged by the addition of multiple frequencies to the
laser beam [33], and are consistent with the Lawson-Woodward theorem [8, 9]. Vacuum laser
acceleration is impossible in the cylindrical laser modes, which appeared the best matched
to the problem.

5.6 Acceleration in a Laser Cavity

In practice, a laser beam exists only over a finite length in z, typically defined by mirrors.
Clearly, electrons could be accelerated in the resulting optical cavity, if the transition radia-
tion from the cavity walls interferes with the laser beam. The acceleration would be linear
in the laser field strength, as is the case for acceleration in an rf cavity. By our definition,
this is not, however, vacuum laser acceleration (even if the cavity is under vacuum) since the
cavity walls play an essential role.

A difference between a laser cavity and an rf cavity is that the cavity length is typically
much longer than a laser wavelength, while usually shorter than an rf wavelength. Also, the
phase velocity in an rf cavity can be adjusted to match that of a charge particle, while the
phase velocity in a laser cavity will typically exceeds the speed of light. Hence, useful laser
cavity acceleration will occur only over a distance such that the wave advances by about
one reduced wavelength past the electron. This distance was introduced in sec. 5.1.3 as the
formation length, Lformation ≈ γ2λ, where γ is the Lorentz factor of the electron. Again, we
conclude that optimal energy transfer between a laser beam and an electron occurs when the
Rayleigh range is equal to the formation length. Accordingly, the optimal diffraction angle
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θ0 is approximately 1/γ.
A direct calculation of the energy gain from Ez of a long (g = 1) radially polarized laser

mode, eqs. (71-72), over path length 2L confirms this [9, 31, 37],

ΔUe(L) = eE0,z

∫ L

−L

dz
z2
0

z2 + z2
0

cos[2 tan−1(z/z0)]

= 2eE0,zz0
Lz0

L2 + z2
0

. (76)

The maximum energy gain is attained at the matching condition, L = z0, with the same
result as eqs. (39)-(40),

ΔUe,max = eE0,zz0 = eE0θ0z0 = eE0w0. (77)

To achieve this maximum, the Rayleigh range should also be equal to the formation length,
so as to avoid the problem of phase slippage (which was ignored in calculation (76)). Then
θ0 = 1/γ and the energy gradient is eE0/γ, so that laser cavity acceleration becomes less
and less effective at higher energies.

Let us apply the Maxwellian argument for cavity acceleration, now examining what
happens if the separation 2L between the walls of the cavity becomes large compared to a
wavelength. We look for interference between the transition radiation from the first cavity
wall and the transversely polarized field of the laser near the focus.

The spectrum of transition radiation from the first wall is dU1 ≈ e2dk = e2dω/c, according
to eq. (2). If the temporal pulse length of the laser is τ (which we assume to be less than
z0/c), then the corresponding frequency band is dω ≈ 1/τ . Hence, the total energy of the
transition radiation within the bandwidth of the laser is U1 ≈ e2/(cτ ). Furthermore, the
effective pulse length of the transition radiation emitted into this bandwidth is also τ .

This radiation must also overlap the laser pulse in space. For an electron moving with
Lorentz factor γ, the characteristic angle of the radiation is θ ≈ 1/γ. If the first wall is
distance L from the laser focus, the transition radiation has spread over radius Lθ ≈ L/γ
when it reaches the focus. Hence, the volume of the transition radiation that could interfere
with the laser is roughly cτ(L/γ)2. The corresponding field strength E1 is related by,

U1 ≈ cτ
L2

γ2
E2

1 ≈ e2

cτ
, (78)

so that,

E1 ≈ γe

cτL
, (79)

to within a phase factor.
The transition radiation interferes with the laser field near the focus, whose field strength

is called E0. The length of the interaction volume is cτ , while its radius is the minimum of
the laser waist, w0, and the radius L/γ of the transition radiation pattern.

First, consider small cavity length L, in which case the overlap radius is L/γ. The
interference term in the total field energy is,

Uint ≈ −E0E1cτ
L2

γ2
≈ −eE0

L

γ
, (80)
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for a suitable choice of phase of the electron relative to the laser beam. If the focus of the
laser beam is matched to the Lorentz factor of the electron, we have θ0 = w0/z0 = 1/γ for
the diffraction angle. The energy gain by the electron is then,

ΔUe = −Uint ≈ eE0w0
L

z0
≈ eE0,zL. (81)

The energy gain increases with cavity length until it reaches the maximum stated in eq. (77)
at L = z0, beyond which the transition radiation no longer overlaps fully with the laser
beam.

For laser cavity length L > z0, the overlap radius is w0. The interference term in the
total field energy is then,

Uint ≈ −E0E1cτw2
0 ≈ −eE0

γw2
0

L
, (82)

for a suitable choice of phase of the electron relative to the laser beam. Again, we suppose
that the focus of the laser beam is matched to the Lorentz factor of the electron, so that
γw0 ≈ z0. The energy gain by the electron is then,

ΔUe = −Uint ≈ eE0w0
z0

L
≈ eE0,zz0

z0

L
. (83)

The energy gain is suppressed for cavity lengths greater than the Rayleigh range.
The Maxwellian argument emphasizes the transverse, rather than the longitudinal, field

of the laser, since it is the former that interferes strongly with the radially polarized transition
radiation. Then, we conclude that the laser beam should be radially polarized as well; a plane
polarized laser could cause no laser cavity acceleration. Finally, we connect acceleration with
longitudinal electric field by noting that radially polarized laser modes have nonvanishing
longitudinal electric fields on axis, in contrast to plane-polarized modes. We also conclude
that azimuthally polarized laser beams will not accelerate electrons, even though they have
nonvanishing longitudinal electric field on axis. [Problem: A direct calculation using Ez

from eq. (74) seems to give the same results as (76), if the phase of the electron is shifted by
90◦, which we are free to do????]

The Maxwellian argument also allows us to appreciate an important point not readily
discerned from direct integration of the equation of motion. A practical laser cavity accel-
erator will likely contain apertures in the end mirror to let the electron beam pass. Those
apertures must not be so large that the transition radiation spectrum no longer covers the
laser frequency, otherwise the interference term would disappear and the electron could not
extract energy from the system. In other words, the aperture must not perturb the longi-
tudinal field too greatly or the direct integration that led to eq. (76) would be inaccurate.
Recall that the cutoff in the transition radiation spectrum is at wave number k ≈ γ/a in
case of an aperture of radius a. Hence, we must have,

a <∼ γλ (84)

for laser cavity acceleration to be effective. This is a rather serious restriction for electrons
of energies up to a few GeV in an optical laser cavity accelerator.
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6 Acceleration by Inverse Radiation

A laser beam can transfer energy to a copropagating electron whenever the electron emits
“spontaneous” radiation that can interfere with the laser field. The energy gain will be
linear in the electric field strength of the laser. Numerous schemes have been proposed for
the needed “spontaneous” emission, some of which are reviewed in this section.

6.1 Inverse Čerenkov Acceleration

Among the proposed variants of laser cavity acceleration, many involve the use of a gas with
index of refraction n, nominally to reduce the phase velocity of the laser beam to c/n to
match the velocity cβ < c of the electron [1, 9, 27, 28]. From the Maxwellian veiwpoint, the
role of the gas is to induce the electron to emit (radially polarized) Čerenkov radiation. Then,
if an axicon-focus laser beam is arranged with diffraction angle that overlaps the Čerenkov
cone, interference and acceleration are possible.

Precise matching of the phase velocity is not required, if the path length is short enough
that the phase slippage is length than λ. Indeed, the condition that β = 1/n is the threshold
for Čerenkov radiation, so the radiation, the interference and the energy transfer would all
vanish in this case.

6.2 Cyclotron Resonance Acceleration

An electron in a uniform magnetic field moves in a helix about a field line, and emits a
variant of synchrotron radiation. If a laser beam propagates along the field line and has the
same frequency as the synchrotron radiation, interference can occur and the electron can be
accelerated. This scheme has been discussed by several authors [38, 39, 40, 41].

6.3 Inverse Bremsstrahlung Acceleration

When an electron moves through a transverse, static electric or magnetic field it emits radi-
ation that could be called a kind of bremstrahlung or (perhaps more properly) synchrotron
radiation. If a laser beam propagates along with the electron and has a frequency that over-
laps with the radiation spectrum induced by the static field, interference and acceleration
can occur. This process is often called inverse bremsstrahlung acceleration [42, 43, 45, 46].

6.4 Inverse Free-Electron-Laser Acceleration

Lots of refs......

6.5 Inverse Smith-Purcell Radiation

[8, 47, 48, 49, 50, 51]

6.6 Plasma Beat-Wave Acceleration

The beat goes on.....
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