Lorentz Invariance
of the Number of Photons in a Rectangular Cavity

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(July 28, 2009; updated September 6, 2017)

1 Problem

In sec. 8 of his 1905 paper introducing special relativity [1], Einstein noted: *It is remarkable that the energy and the frequency of a light complex vary with the state of motion of the observer in accordance with the same law.* In that paper he did not interpret the ratio of energy to frequency as the number of photons in the “light complex”, but this notion was likely on his mind. We are led to the appealing conclusion that the number of photons associated with a “light complex” is Lorentz invariant.

Einstein’s argument was for a finite volume in which the fields were approximated as a monochromatic plane wave. Details of the fields near the boundary of the volume were not considered. A variant of Einstein’s argument was given by Zeldovich [2], but again its application to a well-defined volume that contained the fields was not pursued. Avron et al. [3] considered a box filled with monochromatic waves in its rest frame, and noted that one can obtain conflicting results as to the number of photons according to an observer moving with respect to the box.

Consider a hollow rectangular box of perfectly conducting material with inner dimensions $d_x \times d_y \times d_z$ in its rest frame, where it contains electromagnetic energy U a single cavity mode of angular frequency ω. The number of photons in this classical electromagnetic field is said to be $N = U/\hbar\omega$, where \hbar is Planck’s constant $\hbar/2\pi$. Show that in an inertial frame where the box has uniform velocity v, an observer reports the same number of photons. You may assume that the motion is perpendicular to an edge of the box.

2 Solution

2.1 The Cavity Is at Rest

The standing-wave solutions for electromagnetic fields \mathbf{E} and \mathbf{B} of angular frequency ω inside a perfectly-conducting, rectangular cavity of extent $0 < x < d_x$, $0 < y < d_y$, $0 < z < d_z$ can be written (in Gaussian units) as,\(^1\)

\(^1\)See, for example, [link to the webpage](http://kirkmcd.princeton.edu/examples/ph501/ph501lecture14.pdf)
\[
\begin{align*}
E_x &= E_{0x} \cos k_x x \sin k_y y \sin k_z z e^{-i\omega t}, \\
E_y &= E_{0y} \sin k_x x \cos k_y y \sin k_z z e^{-i\omega t}, \\
E_z &= E_{0z} \sin k_x x \sin k_y y \cos k_z z e^{-i\omega t}, \\
B_x &= B_{0x} \sin k_x x \cos k_y y \cos k_z z e^{-i\omega t}, \\
B_y &= B_{0y} \cos k_x x \sin k_y y \cos k_z z e^{-i\omega t}, \\
B_z &= B_{0z} \cos k_x x \cos k_y y \sin k_z z e^{-i\omega t},
\end{align*}
\]

where the wave vector \(\mathbf{k} \) is,

\[
\mathbf{k} = (k_x, k_y, k_z) = \left(\frac{l\pi}{d_x}, \frac{m\pi}{d_y}, \frac{n\pi}{d_z} \right), \quad \text{and} \quad k = \frac{\omega}{c},
\]

for any set of integers \(\{l, m, n\} \), and \(c \) is the speed of light in vacuum (and inside the cavity). Further, Faraday’s law,

\[
\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t},
\]

implies that \(\mathbf{B}_0 = \hat{\mathbf{k}} \times \mathbf{E}_0 \),

so,

\[
\mathbf{B}_0 \cdot \mathbf{E}_0 = 0, \quad |\mathbf{B}_0| = |\mathbf{E}_0|, \quad \text{and} \quad \mathbf{B}_0 = \frac{(k_y E_{0z} - k_z E_{0y}, k_z E_{0x} - k_x E_{0z}, k_x E_{0y} - k_y E_{0x})}{k}.
\]

The free-space Maxwell equations \(\nabla \cdot \mathbf{B} = 0 = \nabla \cdot \mathbf{E} \) imply that,

\[
\hat{k} \cdot \mathbf{E}_0 = 0 = \hat{k} \cdot \mathbf{B}_0.
\]

For each set of integers \(\{l, m, n\} \) there are two orthogonal polarizations of the vectors \(\mathbf{E}_0 \) and \(\mathbf{B}_0 \). As usual, the physical fields are the real parts of eqs. (1)-(2).

The electromagnetic energy stored in the cavity is,

\[
U = \frac{1}{2} \int \frac{|\mathbf{E}|^2 + |\mathbf{B}|^2}{8\pi} d\text{Vol} = \frac{d_x d_y d_z |\mathbf{E}_0|^2}{64\pi},
\]

independent of the polarization of the fields, and of the mode indices \(\{l, m, n\} \). The classical number of photons in the cavity (at rest) is therefore,

\[
N = \frac{U}{\hbar \omega} = \frac{d_x d_y d_z |\mathbf{E}_0|^2}{64\pi \hbar \omega}.
\]

\footnote{The fields (1)-(2) can be decomposed into eight plane waves with the eight wave vectors \((\pm l\pi/d_x, \pm m\pi/d_y, \pm n\pi/d_z)\).}

\footnote{Nontrivial cavity modes exist only with two or three of \(\{l, m, n\} \) nonzero, so there is no cavity mode in which the wave vector \(\mathbf{k} \) is parallel to a wall of the box. Hence, the arguments of Einstein \cite{1} and of Avron et al. \cite{3} are not strictly applicable to the present example.}
2.2 The Cavity Has Velocity \(v = v\mathbf{x}' \).

We now consider the cavity as observed in the \(\mathbf{x}' \) frame, in which it has velocity \(v = v\mathbf{x}' \).

The fields inside the cavity are no longer perceived as standing waves, but rather as the sum of waves of two different frequencies. To prepare for this, we re-express the standing directions:

\[
\text{To calculate the electromagnetic energy inside the moving cavity at time } t.
\]

\[
\text{The frequency transformations are,}
\]

\[
\omega_\pm = k'_\pm c = \gamma(\omega \mp k_x v) = \gamma\omega \left(1 \mp \frac{k_x v}{k_x c}\right),
\]

where \(\gamma = 1/\sqrt{1-v^2/c^2} \). Waves that move in the \(+x' \) (right) direction have the lower frequency \(\omega'_+ \).

The transformations of the electromagnetic fields are,

\[
E'_x = E_x, \quad E'_y = \gamma\left(E_y + \frac{v}{c}B_z\right), \quad E'_z = \gamma\left(E_z - \frac{v}{c}B_y\right),
\]

and,

\[
B'_x = B_x, \quad B'_y = \gamma\left(B_y - \frac{v}{c}E_z\right), \quad B'_z = \gamma\left(B_z + \frac{v}{c}E_y\right).
\]

To calculate the electromagnetic energy inside the moving cavity at time \(t' \) we need,

\[
|E'|^2 + |B'|^2
\]

\[
= |E_x|^2 + |B_x|^2 + \gamma^2 \left[\left(1 + \frac{v^2}{c^2}\right) \left(|E_y|^2 + |E_z|^2 + |B_y|^2 + |B_z|^2\right) + 4\frac{v}{c} Re(E_y B^*_z - E_z B^*_y) \right].
\]

The volume of the moving cavity is \(d_x d_y d_z / \gamma \), due to the Lorentz contraction. Also, the cross terms due to fields with different frequencies will vanish in the calculation the time-average energy stored in the moving cavity, so we can write,

\[
\langle U' \rangle = \langle U'_+ \rangle + \langle U'_- \rangle,
\]

3
where,

\[
\langle U'_{\pm} \rangle = \frac{1}{2} \int \frac{|E_{\pm}|^2 + |B_{\pm}|^2}{8\pi} d\text{Vol}'
\]

\[
= \frac{d_x d_y d_z}{256\pi \gamma} \left\{ |E_{0x}|^2 + |B_{0z}|^2 \right. \\
+ \gamma^2 \left[\left(1 + \frac{v^2}{c^2} \right) (|E_{0y}|^2 + |B_{0y}|^2 + |B_{0z}|^2) + 4\frac{v}{c} \text{Re}(iE_{0z}B'_{0y} - iE_{0y}B'_{0z}) \right] \\
= \frac{\gamma d_x d_y d_z}{256\pi} \left\{ \left(1 - \frac{v^2}{c^2} \right) (|E_{0x}|^2 + |B_{0z}|^2) + \left(1 + \frac{v^2}{c^2} \right) (|E_{0y}|^2 + |E_{0z}|^2 + |B_{0y}|^2 + |B_{0z}|^2) \right\} \\
= \frac{\gamma d_x d_y d_z}{256\pi} \left\{ 2|E_0|^2 - \frac{v^2}{c^2} (|E_{0x}|^2 + |B_{0z}|^2 - |E_{0y}|^2 - |B_{0z}|^2) \right\},
\]

recalling from eq. (4) that vectors \(E_0 \) and \(B_0 \) are relatively real. Using eq. (5), we have,

\[
|E_{0x}|^2 + |B_{0z}|^2 - |E_{0y}|^2 - |E_{0z}|^2 - |B_{0y}|^2 - |B_{0z}|^2 \\
= 2|E_0|^2 - 2|E_{0y}|^2 - 2|E_{0z}|^2 - 2|B_{0y}|^2 - 2|B_{0z}|^2 \\
= 2|E_0|^2 - 2|E_{0y}|^2 - 2|E_{0z}|^2 \\
- \frac{2}{k^2} \left(k_x^2 |E_{0x}|^2 + k_z^2 |E_{0z}|^2 - 2k_x k_z \text{Re}(E_{0x}E^*_0) \right) \\
- \frac{2}{k^2} \left(k_y^2 |E_{0x}|^2 + k_y^2 |E_{0y}|^2 - 2k_y k_z \text{Re}(E_{0x}E^*_0) \right) \\
= 2|E_0|^2 - 2|E_{0y}|^2 - 2|E_{0z}|^2 \\
- \frac{2}{k^2} \left(k_x^2 |E_{0x}|^2 + k_z^2 |E_0|^2 - 2k_x |E_{0x}|E^*_0 \right) \\
= -\frac{2k^2}{k^2} |E_0|^2.
\]

Thus,

\[
\langle U'_{\pm} \rangle = \frac{\gamma d_x d_y d_z}{128\pi} \left(1 - \frac{k_x^2 v^2}{k^2 c^2} \right) |E_0|^2.
\]

The energies are the same in the waves moving in the \(+x' \) and \(-x' \) directions.

The numbers of classical photons in the moving cavity are, recalling eq. (15),

\[
N'_{\pm} = \frac{\langle U'_{\pm} \rangle}{\hbar \omega_\pm} = \frac{\gamma d_x d_y d_z}{128\pi \hbar} \left(1 - \frac{k_x^2 v^2}{k^2 c^2} \right) \frac{|E_0|^2}{\gamma \omega (1 \mp k_x v/kc)} = \frac{N}{2} \left(1 \pm \frac{k_x v}{kc} \right).
\]

While there are more photons of lower frequency (right-moving) than higher frequency (left-moving) in the moving box, the total number \(N' = N'_+ + N'_- = N \) of photons observed at a time \(t' \) is the same as when the box is at rest (at a time \(t \)), recalling eq. (8).

\footnote{For observations in the ' frame at time \(t' = 0 \), the corresponding times of observation in the rest frame are \(t = 0 \) for the left wall at \(x = 0 \) and \(t = -vd_x/c^2 \) for the right wall at \(x = d_x \). The ' observer counts some photons near the right wall as being right-moving at time \(t' = 0 \) (\(t < 0 \)), while the rest frame observer will count these as left-moving at the later time \(t = 0 \) after they have reflected off the right wall. That is, the ' observer counts more right-moving (lower-energy) than left-moving photons.}

4
2.3 Is the Field Energy Part of the Rest Energy of the System?

A side issue of possible interest is the question of whether the field energy U can/should be considered as contributing to the “rest” energy of the system, such that,

$$U_0 = Mc^2 + U,$$

(24)

in the rest frame of the box, whose rest mass without fields inside is M.

If so, then in the frame where the box has velocity $\mathbf{v} = v \hat{x}$, the energy of the system should be,

$$U' = \gamma U_0 = \gamma (Mc^2 + U).$$

(25)

However, in this frame the box itself has energy,

$$U'_{\text{box}} = \gamma Mc^2,$$

(26)

and the fields have energy,

$$U' = \gamma U \left(1 - \frac{k^2 v^2}{k^2 c^2} \right),$$

(27)

so that the actual energy of the system is,

$$U' = \gamma \left[Mc^2 + U \left(1 - \frac{k^2 v^2}{k^2 c^2} \right) \right],$$

(28)

rather than expression (25).

Missing from the above analysis is the energy associated with the stress on the walls of the box due to the “radiation pressure” of the fields inside. Presumably, if these stresses, and their Lorentz transformations, were included in the analysis, a meaningful rest energy could be defined for the system. For a simpler example of this, see [4].

2.4 Are the Cavity Photons “Localized?”

The cavity photons are “localized” in the sense of being “trapped” inside the cavity. A cavity photon of energy $E = \hbar \omega$ has no momentum, $\mathbf{P} = 0$, and so can be said to have effective mass $m = \sqrt{E^2 - c^2 P^2}/c^2 = \hbar \omega/c^2$. The cavity photons are “virtual photons,” with nonzero mass.

However, people also speak of “Anderson localization” [5] of quantum waves/particles in disordered media when ordinary diffusion is absent due to the localizing effect of multiple scattering. Anderson localization of light was perhaps first discussed in [6], and is considered to have been observed (see, for example, [7], but apparently some reports of this must be regarded with skepticism (see, for example, [8]).

References

http://kirkmcd.princeton.edu/examples/EM/einstein_ap_17_891_05.pdf
http://kirkmcd.princeton.edu/examples/EM/einstein_ap_17_891_05_english.pdf

http://kirkmcd.princeton.edu/examples/CM/anderson_pr_109_1492_58.pdf

http://kirkmcd.princeton.edu/examples/CM/john_prl_53_2169_84.pdf
