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1 Problem

Deduce the frequency of small oscillations of a hoop that is suspended from three strings of
length l such that the plane of the hoop is always horizontal.

2 Solution

This problem illustrates the importance of choosing the appropriate coordinate for the anal-
ysis.

The hoop is constrained by the three strings such that if its center of mass moves ver-
tically, the hoop rotates about a vertical axis through the cm. There is only one degree of
freedom, and candidate coordinates are y, the height of the cm above its equilibrium posi-
tion, and θ, the angle of rotation of the hoop about the axis through the cm. (Alternatively,
the angular coordinate could be chosen as the angle between one of the support strings and
the vertical.)

The kinetic energy is,

T =
1

2
mẏ2 +

1

2
mr2θ̇

2
, (1)

and the potential energy is,
V = mgy, (2)

where m and r are the mass and the radius of the hoop, respectively.
The constrained motion relates coordinates y and θ as follows. When the hoop has

rotated a small angle θ, the point of attachment to the hoop of one of the support strings
has moved distance y vertically and distance rθ horizontally. Since the length of the support
string is l, the vertical distance h from the support plane to the hoop is now,

h =
√

l2 − (rθ)2 ≈ l − r2θ2

2l
. (3)

During this motion, the cm of the hoop has risen by,

y = l − h ≈ r2θ2

2l
. (4)

Using this constraint relation we can now express the kinetic and potential energies in terms
of a single coordinate, either y or θ.

It is tempting to use y as the favored coordinate, but this is a bad choice for a problem of
small oscillations, because the potential energy (2) is not a quadratic function of y. Rather,
we see that the potential energy is a quadratic function of θ, which will lead to a simple
expression for oscillatory motion of this coordinate.
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Hence, we write the kinetic and potential energies as,

T =
1

2
m

r4

l2
θ2θ̇

2
+

1

2
mr2θ̇

2
, (5)

and ,

V =
mgr2θ2

2l
, (6)

noting from eq. (4) that,

ẏ =
r2θθ̇

l
. (7)

As we are concerned with small oscillations, we can ignore the first term in the kinetic energy
(5) since it is small compared to the second, and we write,

T ≈ 1

2
mr2θ̇

2
, (8)

The Lagrangian (for small oscillations) is therefore,

L = T − V ≈ 1

2
mr2

(
θ̇

2 − g

l
θ2

)
, (9)

which leads to the equation of motion,

θ̈ ≈ −g

l
θ. (10)

Hence, the angular frequency ω of small oscillations is,

ω =

√
g

l
, (11)

which is the same as that of a simple pendulum of length l.

Suppose, however, we had chosen y rather than θ as the independent coordinate. Then,
eqs. (4) and (7) tell us that,

θ̇ =

√
l

2y

ẏ

r
, (12)

and the kinetic energy is,

T =
1

2
mẏ2

(
1 +

l

2y

)
≈ 1

2
m

lẏ2

2y
, (13)

where the approximation holds for small y. This form is undefined at the equilibrium value
of y = 0, which should be a warning that y was not a good choice of coordinate. Nonetheless,
we might persist to consider the Lagrangian,

L = T − V ≈ 1

2
m

(
lẏ2

2y
− 2gy

)
, (14)
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which leads to the equation of motion,

ÿ − ẏ2

2y
≈ −2

g

l
y, (15)

This is not an equation for oscillatory motion about the equilibrium value y = 0.
We recall that coordinate y takes on only positive values during the motion, so the

constraint relation (4) suggests that we try a solution of the form,

y = y0 cos2 ωt, (16)

for which,
ẏ = −2ωy0 sin ωt cosωt, (17)

and,
ÿ = −2ω2y0(cos

2 ωt− sin2 ωt). (18)

Substituting eqs. (16)-(18) into the equation of motion (15) we find the frequency ω to be
given by eq. (11). However, without the insight that small oscillations about equilibrium
occur in coordinate θ rather than in y, we would be stuck at eq. (15) – or if we erroneously
ignored the term ẏ2/2y we would have incorrectly concluded that ω =

√
2g/l.
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