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1 Problem

Discuss the fluid flow in a syringe whose piston has area Ap = πR2
p smaller than the area

As = πR2
s of the cylindrical body, when the piston is force to move at constant velocity V .

This problem was suggested by Johann Otto.

2 Solution

When the area of a fluid flow changes abruptly, the fluid flow may pull away from the wall
in the region of smaller area, which effect is called the vena contracta, as first noted by
Torricelli in 1643 [1].

In the present problem, this could mean that the fluid flow inside the needle (where the
average velocity is V ′) and in the annulus between the piston and the outer cylinder (where
the average velocity is V ′′) has areas smaller than that of the needle of radius R′ and the
annulus between radii Rs of the outer cylinder and Rp of the piston. If so, there would be five
unknown quantities, the pressure P in the syringe (where the flow velocity is approximately
zero), the flow velocities V ′ and V ′′, and the two reduced areas associated with those flow
velocities.

However, there would then be only three equations to determine these five unknowns:
mass conservation (assuming an incompressible fluid), and energy and momentum conser-
vation (in the sense that the energy and momentum gained by the fluid is supplied by the
agent that exerts force F on the piston). Note that if the fluid has pulled away from the
walls of the needle, the piston and the syringe, there is no fluid friction at these surfaces,
and hence no additional equations involving the fluid viscosity.

To obtain a solution to the present problem, in which the fluid leaves the syringe via two
flow paths, we suppose that the vena contracta does not occur, such that the fluid fills the
needle and the annulus around the piston, and there is fluid friction at the walls of these
regions.1 Then, there are only three unknowns, P , V ′ and V ′′, which can be determined

1This contrasts with the related case of a shock absorber (hydraulic brake) [2], in which there is only a
single flow path, and the vena contracta must be taken into account.
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using mass conservation, and Poiseuille’s law for flow with friction in the needle and in the
annulus.

The equation of mass conservation is,

Q = V As = V ′A′ + (V + V ′′)A′′ ≈ V ′A′ + V ′′A′′ = Q′ + Q′′, (1)

where A′′ = As − Ap = πR2
s − πR2

p � As is the cross sectional area of the annulus, and
V + V ′′ is the velocity of the fluid in the annulus relative to the moving piston, taking V ′′

to be the velocity of the fluid in the annulus relative to the syringe. For a narrow annulus,
V ′′ � V , and we will neglect the small correction due to V in the following.

Poiseuille’s law [3]-[8] for flow of a fluid with dynamic viscosity η in the (circular) needle
of radius R′, area A′ = πR′2, and length L′ is,

Q′ = V ′A′ =
πR′4(P − P0)

8ηL′ , (2)

where P0 is the atmospheric pressure at the outlet of the needle.2

The flow Q′′ in the annulus (of length L) is a variant of so-called Taylor-Couette [10]
flow, where the two cylindrical surfaces have a relative axial velocity, rather than being in
relative rotation. For simplicity, we suppose that flow in the annulus is sufficiently well
approximated by planar Poiseuille flow in a rectangular slot of thickness t = Rs − Rp and
width w = 2πRs � t. In this, we expect that for w � t the flow rate will be proportional to
the width w of the channel. Then, by dimensional analysis, the dependence on the thickness
t of the channel must be t3.3 We infer that the flow rate is Q′′ ≈ t3wΔP/ηL, and in the
limit that Rp = 0 we must have Q′′ = πR4

s(P − P0)/8ηL following eq. (2). Hence, a simple
approximation is that4

Q′′ = V ′′A′′ ≈ t3w(P − P0)

16πηL
=

π(Rs − Rp)
3Rs(P − P0)

8ηL
. (3)

Using eqs. (2)-(3) in eq. (1), the pressure P inside the syringe is

P ≈ P0 +
8ηV AsLL′

π[LR′4 + L′Rs(Rs − Rp)3]
. (4)

The (average) flow velocities are then,

V ′ ≈ V
As

A′
LR′4

[LR′4 + L′Rs(Rs − Rp)3]
, V ′′ ≈ V

As

A′′
L′Rs(Rs −Rp)

3

[LR′4 + L′Rs(Rs −Rp)3]
. (5)

2Poiseuille’s law may have been first derived in [9].
3The impressive result that the dependence of the flow rate Q′′ on the small thickness t is t3 rather than

t or t2 illustrates that fluid dynamics is not intuitive.
4For planar Poiseiulle flow, the 8 in eq. (3) is 12. See, for example, p. 843 of [11]. For annular Poiseuille

flow, the “exact” result is Q′′ = π[R4
s − R4

p − (R2
s − R2

p)2/ ln(Rs/Rp)]/8ηL ≈ π(Rs − Rp)3Rp(P − P0)/6ηL
for small Rs − Rp. See, for example, eq. (3-51), sec. 3-3.3 of [12], or eq. (3.8), sec. 3.1 of [13]. The “exact”
form of Q′′ goes to πR4

s/8ηL as Rp → 0.
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2.1 L, L′ → 0

If the lengths L and L′ of the piston/annulus and of the needle are very short, friction in the
annulus and in the needle become negligible. In this case the fluid flow will exhibit the vena
contracta [1] at both the annulus and the “needle” (which is now simply a circular aperture
in the end wall of the syringe).

For a solution when viscosity is neglected, we estimate the areas of the flow in the annulus
and in the “needle” to be 1/2 their geometrical areas, as holds approximately in many cases.
And, since the work done on the fluid is the kinetic energy of the fluid (when viscosity and
gravity are neglected), we have that (for V � V ′′),

Ftotal = FV − P0
A′

2
V ′ − P0

A′′

2
V ′′ = PApV − P0

V ′A′ + V ′′A′′

2

=
dKEfluid

dt
≈ ρV ′A′

2

V ′2

2
+

ρV ′′A′′

2

V ′′2

2
=

ρ

4
(V ′3A′ + V ′′3A′′), (6)

noting that the mass of fluid accelerated per second from rest in the syringe to velocity V ′

in the “needle” is approximately ρV ′A′/2, and that accelerated each second to velocity V ′′

in the annulus is ρV ′′A′′/2, where A′ and A′′ are the geometric areas. Also, the time rate of
change of momentum of the fluid is,

d pfluid

dt
≈ ρV ′A′

2
V ′ − ρV ′′A′′

2
V ′′ = Ftotal = F + P0A

′′ − P (As − A′) − P0A
′

= (P − P0)(A
′ − A′′). (7)

Finally, mass conservation, eq. (1), implies that,

V As ≈ V ′A′ + V ′′A′′

2
. (8)

We now have three equations for the three unknowns P , V ′ and V ′′, so in principle these
unknowns are determined. However, eq. (6) is a cubic equation so the solution is algebraically
intricate, and we do not give it here.5

The special case when A′ = 0 (no needle) is the same as the hydraulic brake considered
in sec. 2.2 of [2]. The case when A′′ = 0 corresponds to a syringe without a leak (and with a
zero-length “needle”), for which both eqs. (6) and (7) give P = P0+ρV ′2/2 (for Ap = As = A
and mass conservation V A = V A′/2), as also follows from Bernoulli’s equation6 (which does
apply to this simple case, unlike the cases where A′ = 0 and the present example where both
A′ and A′′ are nonzero).

Thanks to Edward Yang for pointing out that the approximation of eq. (3) was poor in
a previous version of this note.

5Surprisingly, the solution for the case of nonzero lengths of the needle and piston, when effects of
viscosity must be considered, is analytically simpler than the case of zero length of the needle and piston,
for which viscosity can be ignored.

6Bernoulli’s equation applies in situations where the kinetic + potential energy of the fluid is conserved,
and where the fluid flow is steady. See [14] for further discussion of this point.
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