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1 Problem

Discuss the motion of a folded (inextensible) string (or cable or chain), one end of which is
fixed, after the other end is released from rest.1

2 Solution

2.1 Free Fall

We might suppose that there is no tension in the “free” portion of the string, which portion
simply accelerates downward at rate g.2

For a configuration as sketched below, if the string has length l and is initially folded
such that z = 0 at time t = 0 when one end is released, then subsequently z̈ = g until after
time t =

√
2l/g the string is entirely vertical, and again at rest.

This problem may have first appeared as Ex. II, p. 302 of [13] by Love (1897), where the
above solution was advocated. Love also argued that the tension at the lowest point3 of the

1This classic problem was brought to the author’s attention by Johann Otto.
2This view seems to be advocated by Routh (1896) in Ex. 4, p. 82 of [15].

Examples of falling chains were often considered at Cambridge U. [13, 14, 15, 16, 18, 20, 21], as recounted
in a footnote on p. 80 of [15]: Problems on infinitesimal impulses were solved in the lecture room of the late
Mr Hopkins as long ago as 1850. A problem of this kind was set in the Smith’s Prize examination in 1853
by Prof Challis, and a solution given in Tait and Steele’s Dynamics. For the latter, see pp. 250-251 of [6].

The earliest example of a variable-mass string problem may be due to Buquoy (1815) [4, 70, 98], to which
the only published reference in the 19th century was by Poisson (1819) [5]. Also of note in the 19th century
are papers by Cayley [8, 11], and those related to the laying of the transAtlantic cable [9, 10]. The latter
activity includes the interesting phenomena of vertical “arching” as a slack string is pulled from a nominally
horizontal configuration at rest [7, 81, 90], https://www.youtube.com/watch?v=HoSKvBweOrg, which has
led to the fascinating “chain fountain” [85, 86, 87, 91, 93, 94, 95, 97, 101, 103, 104].

Variable-mass problems involving water jets were first considered by Torricelli (1644) [1] and first analyzed
by Bernoulli (1738) [2, 102], and variable-mass rocket problems were perhaps first discussed by Moore (1813)
[3]. A paper by de Mondesir (1887) [12] on variable-mass systems involving chains led to some debate, later
discussed in [17].

3Called the bight in Ex. 5, p. 149 of [20].
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portion of the string at rest is T = μg2t2 = 2Wz/l, where μ is the mass per unit length and
W = μlg is the weight of the string/rope/chain, whose free end is at z = gt2/2: An element,
of mass μgt dt, passes from motion with velocity gt to rest in an interval dt, so that the
momentum destroyed by the impulse T dt is μg2t2 dt. Hence T = μg2t2.

However, when the upper end of the string falls by dz = vdt = gt dt, only half of this
length comes to rest,4 Hence, the tension according to this analysis is actually T = μg2t2/2 =
Wz/l. This result was quoted in Ex. 5, p. 149 of [20] by Lamb (1914).5

Lamb [20] ended his discussion with the challenge: Examine the loss of mechanical energy.
As the string falls its potential energy decreases by Wl/4, and the final kinetic energy is zero,
although the kinetic energy of the string is nonzero while it is in motion. There must be
some conversion of potential energy into “nonmechanical” energy as the string falls.6 This
conversion could be continual, or could occur only at the moment when the tip of the falling
string comes to rest after briefly attaining very high velocity. In the latter scenario the
falling string is like the cracking of a whip.7 Another possibility is that kinetic plus potential
energy is conserved as the string falls, and the analysis presented above is incorrect.8 The
most general possibility is that the motion is neither simply free fall, nor is mechanical energy
conserved.

2.2 Mechanical Energy is Conserved

An early advocate of conservation of mechanical energy in motion where strings/chains/whips
change their shape was Kucharski (1941) [22].9 The first application of energy conservation
to the present problem may have been by Hamel (1948), Ex. 100, pp. 643-645 of [28],10 The
first use energy conservation in a paper in English on a falling, folded string may be that of
[35] (1955).

The kinetic and potential energies are, taking the potential energy V , and the total energy
E = T + V , to be zero at time t = 0 when one end of the string is released from rest at

4The length L of the portion of the string at rest is related by L = (l + z)/2, so dL = dz/2.
5In prob. 8.30, p. 241 of [43] where the tension at the point of support of the string was stated to be

(W/2)(1+3z/l), which is the sum of the tension T = 2(W/2)(z/l) at the bight plus the weight µg(l+z)/2 =
(W/2)(1 + z/l) of the portion of the string at rest. See also sec. II of [48].

6On p. 260 of [13], Love stated: It is important to observe that discontinuous motions such as are
considered here in general involve dissipation of energy.

7The case of a string/tape wrapped around a massless spool which rolls down an incline, unwinding the
string, was discussed in [23] (1941). It seems reasonable that energy is conserved during the rolling, but
this implies that the remaining string on the spool attains very high kinetic energy, which is dissipated with
a loud crack as the end of the tape comes to rest on the incline [25]. Regarding whips, see, for example,
[36, 41, 44, 54, 63, 64].

8The closely related problems of a string/chain sliding off a frictionless table, and a string falling off the
table from a heap at its edge (Cayley’s problem [8]), were contrasted by Sommerfeld (1943) in examples I.7
and I.8 of [24], where energy might be conserved in the first problem, but is not in the second. See also the
Appendix below.

9One can consider the Lagrangian L(z) = T (z) − V (z) for the entire string, which does not depend
explicitly on time, with the implication that energy is conserved. The resulting equation of motion for
coordinate z is the same as eq. (2).

However, energy is only approximately conserved, so the Lagrangian method leads only to an approximate
analysis, rather than an “exact” one.

10Hamel’s argument also appeared in a few other German texts, as reported in [52].
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z = 0,

T =
μ(l − z)ż2

4
, V = −μgz(2l − z)

4
, (l − z)ż2 = gz(2l − z). (1)

This leads to,

z̈ = g +
ż2

2(l − z)
= g

(
1 +

z(2l − z)

(l − z)2

)
> g, (2)

and,

t =

∫ t

0

dt =

∫ z

0

dz

ż
=

∫ z

0

dz

√
l − z

gz(2l − z)
=

√
l

g

∫ z/l

0

dx

√
1 − x

x(2 − x)

=

√
l

g

∫ sin−1
√

z/l

0

dθ
cos2 θ√

1 + cos2 θ
, (3)

with the changes of variable x = z/l = sin2 θ. This is an elliptic integral, and in particular
the entire fall time (z = l, θ = π/2), turns out to be 0.85

√
2l/g [48], somewhat less than

the time
√

2l/g for free fall as in sec. 2.1 above.
For the string to accelerate downwards at a rate greater than g there must be a tension

Tbot at the bottom of the string, where elements of the string are continually coming to
rest, so one might have thought the string would under compression, rather than tension,
there. This possibly surprising phenomenon is a general feature of the dynamics of strings,
as reviewed in [78]. Here, we can use the equation of motion for the moving portion of the
string to deduce Tbot,

μ
l − z

2
z̈ = Tbot + μ

l − z

2
g, Tbot =

μż2

4
=

μgz(2l − z)

4(l − z)
. (4)

A quantity more accessible to experiment is the tension,

Ttop = Tbot +
μg(l + z)

2
=

μg(2l2 + 2lz − 3z2)

4(l − z)
=

W

2

1 + z/l − 3z2/2l2

1 − z/l
, (5)

which starts from μgl/2 = W/2 and then diverges as the string falls.
Experiments on falling, folded strings have been reported in [35, 48, 55, 71, 76, 80, 97].

The figure on the next page (from [48]) shows the observed tension Ttop to be in excellent
agreement with the above analysis, although of course the tension is never actually infinite.

Significant nonconservation of energy just before the tip of the string comes to rest
prevents the velocity, acceleration and tension from becoming infinite, but conservation of
energy appears to hold rather well during most of the motion of the falling, folded string.
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Other discussions of this example are in [57, 61, 65, 66, 72, 73, 77, 89, 96, 100, 104].
General comments on variable-mass problems are also given in [24, 33, 34, 37, 39, 40, 43, 50,
59, 62, 67, 68, 83].

A Appendix: Cayley’s Problem

In 1857, Cayley [8] considered the example where: a portion of a heavy chain hangs over
the edge of a table, the remainder of the chain being coiled or heaped up close to the edge
of the table. A closely related example concerns the case where the portion of the chain on
the (frictionless) table lies in a straight line perpendicular to its edge.

Here we review solutions based on the (näıve) assumption that the chain falls purely
vertically, making a sharp bend by 90◦ at the edge of the table.

A.1 Chain “Heaped Up Close to the Edge of the Table”

When the end of the chain is distance z below the plane of the tabletop, the momentum of the
(vertical portion of) the chain is pz = m(z/l)ż, subject to the force of gravity, Fz = m(z/l)g.
Hence, ignoring any force between the chain on the table and that below, the equation of
motion can be written as,

l

m

dpz

dt
=

d(zż)

dt
=

l

m
Fz = zg, zż

d(zż)

dt
= z2żg,

(zż)2

2
=

(z3 − z3
0)g

3
, (6)

where z0 is the length of the chain hanging over the edge at t = 0, when the system is at
rest.

For the case that z0 is very small, the equation of motion is approximately,

ż2 =
2gz

3
,

dz√
z
≈

√
2g

3
dt, 2

√
z ≈

√
2g

3
t, z ≈ gt2

6
, z̈ ≈ g

3
. (7)

The kinetic energy of the chain is T = m(z/l)ż2/2, and its gravitational potential energy
is V = −m(z/l)gz/2. If mechanical energy were conserved, we would have zż2−gz2 = −gz2

0,
and for small z0, ż2 = gz, i.e., z̈ = g/2.11

11Likewise, if one invoked Lagrange’s method for L = T − V , one would find the equation of motion for
small z0 to be z̈ = g/2.
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Instead, we have,

E =
mz

l

(
ż2

2
− gz

2

)
= −mzż2

4l
= −3mż4

8gl
, Ė = −mż3

2l
= −1

2

(
m

l

dz

dt

)
ż2 = −1

2

dmv

dt
ż2, (8)

where mv = mz/l, such that dmv/dt is the rate at which mass changes from being at rest on
the table to falling with velocity ż. The corresponding abrupt increase in kinetic energy at
the edge of the table comes at the expense of the mechanical energy of the rest of the falling
chain.12

See also [24, 33, 65, 82].

A.2 Chain in a Straight Line on the Table

In this case the entire chain has velocity ż and acceleration z̈ (although in different directions
for the horizontal and vertical portions of the chain). Again assuming that the portion of
the chain off the table is purely vertical, the equation of motion is,13

mz̈ =
mz

l
g, z =

√
g

l

(
A et

√
g/l + B e−t

√
g/l

)
= z0 cosh

(
t
√

g/l
)

, (9)

where length z0 hangs off the table at time t = 0, when the system is at rest.
There are no abrupt movements of elements of the chain, so mechanical energy can be

conserved,

E =
mż2

2
− mz

l

gz

2
=

mgz2
0

2l

[
sinh2

(
t
√

g/l
)
− cosh2

(
t
√

g/l
)]

= −mgz2
0

2l
. (10)

However, in neither case does the chain fall purely vertically in practice. The photos
below, from [88], are for an experiment where the portion of the chain on the “table” lies in
a straight line.

This phenomenon was implicit in the discussion by den Hartog (1948), p. 192 of [27],
where a guide was specified to force the chain for fall purely vertically, as shown in his
Fig. 164 below.14

12Other perspectives on this behavior are given in [38, 60].
13Here, conservation of mechanical energy is a good approximation, and leads to eq. (9). Likewise, a

Lagrangian analysis leads to this equation of motion.
14However, den Hartog incorrectly evaluated the force on this guide, as remarked in footnote 14 of [42].
The need for a guide to keep the chain vertical was also mentioned in Ex. 12, p. 171 of [33] (1953).

5



For other discussions which assume that the chain falls vertically, see [19, 24, 39, 66, 97],
while discussions of horizontal motion of the chain when off the table include [42, 46, 51]. A
video showing the complex motion of the end of a moving chain as it unwraps from various
objects is at [84].
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