1 Problem

A popular ride at amusement parks is the “slingshot,” in which two bungee cords of rest length \(l_0 \) and spring constant \(k \) are attached between two poles distance \(2l \) apart and connected to mass \(m \). The mass is lowered by height \(H > 0 \) below the tops of the poles, and then released.

What is the maximum velocity of the mass?
What is the maximum height \(h \) above the tops of the poles reached by the mass? For this, suppose that \(l_0 = 0 \).
What are the frequencies of the normal modes of small oscillation of the system about equilibrium?

2 Solution

We assume that there is no energy dissipation in the bungee cords. Then for purely vertical motion along the \(z \)-axis, with \(z = 0 \) at the top of the poles, the energy is,

\[
E = \frac{mv^2}{2} + k \left(\sqrt{z^2 + l^2} - l_0 \right)^2 + mgz \\
= k \left(\sqrt{H^2 + l^2} - l_0 \right)^2 - mgH \\
= k \left(\sqrt{h^2 + l^2} - l_0 \right)^2 + mgh \\
= \frac{mv^2_{\text{max}}}{2}.
\] (1)

The maximum velocity occurs when the mass passes by \(z = 0 \), where,

\[
v_{\text{max}} = \sqrt{\frac{2k}{m} \left[H^2 + 2l_0 \left(\sqrt{H^2 + l^2} - l \right) \right] - 2gH} \quad \rightarrow \quad \sqrt{\frac{2kH^2}{m} - 2gH} \quad \text{if} \quad l_0 = 0.
\] (2)

To find the maximum height \(h \) we equate the second and third lines of eq. (1), which leads to a quartic equation in \(h \) if \(l_0 > 0 \). To obtain a simple analytic result we suppose that \(l_0 = 0 \), in which case we find only a quadratic equation in \(h \),

\[
h^2 + \frac{mgh}{k} + \frac{mgH}{k} - H^2 = 0 = \left(h + H \right) \left(h - H + \frac{mg}{k} \right),
\] (3)
so that the maximum height is,

$$h = H - \frac{mg}{k}.$$ \hspace{1cm} (4)

The general motion is in all three coordinates x, y and z, where we take the x-axis along the line connecting the tops of the poles. One normal mode involves purely vertical oscillations, and another is simple pendulum motion in the y-z plane. The third normal mode is orthogonal to the first two, so should involve oscillation only in x.

For purely vertical motion,

$$m\ddot{z} = -mg - \frac{2kz}{\sqrt{z^2 + l^2}} \left(\sqrt{z^2 + l^2} - l_0\right).$$ \hspace{1cm} (5)

Again, an analytic description is much simpler if $l_0 = 0$. Then,

$$m\ddot{z} = -mg - 2kz,$$ \hspace{1cm} (6)

for which the equilibrium is at,

$$z_0 = -\frac{mg}{2k},$$ \hspace{1cm} (7)

and the angular frequency of small oscillations is,

$$\omega_1 = \sqrt{\frac{2k}{m}}.$$ \hspace{1cm} (8)

The second mode is simple pendulum motion in the y-z plane with length $|z_0| = mg/2k$. The angular frequency of small oscillations for this mode is,

$$\omega_2 = \sqrt{\frac{g}{|z_0|}} = \sqrt{\frac{2k}{m}} = \omega_1.$$ \hspace{1cm} (9)

The third mode is for oscillations along the horizontal line with $y = 0$, $z = z_0$, for which the equation of motion is,

$$m\ddot{x} = -k \left(\frac{x}{\sqrt{(x-l)^2 + z_0^2}} \sqrt{(x-l)^2 + z_0^2} + \frac{x}{\sqrt{(2l-x)^2 + z_0^2}} \sqrt{(2l-x)^2 + z_0^2}\right) = -2kx.$$ \hspace{1cm} (10)

The angular frequency of small oscillations for this mode is,

$$\omega_2 = \sqrt{\frac{2k}{m}} = \omega_1 = \omega_2.$$ \hspace{1cm} (11)

All three modes have the same frequency when $l_0 = 0$, and the system is equivalent to mass m being tied to the equilibrium point $(0,0,z_0)$ by a spring of zero length and constant $2k$.

2