# Slab Rolling on a Rolling Cylinder 

Kirk T. McDonald<br>Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(March 28, 2016; updated April 2, 2016)

## 1 Problem

Discuss the motion of a "slab" that rolls without slipping on a "cylinder", when the latter rolls without slipping on a horizontal plane. ${ }^{1}$

This problem was suggested by Alexandre Tort. For the related case of one cylinder on/inside another, see [1, 2]. For the case of a sphere on a fixed cylinder, see pp. 212-214 of $[3] .{ }^{2}$

## 2 Solution

We will use a Lagrangian approach.

### 2.1 Coordinates and Constraints

When the slab, of thickness $2 a$, mass $m$ and moment of inertia $k m a^{2}$, is directly above the cylinder, of radius $R$, mass $M$ and moment of inertia $K M R^{2}$, and centered upon it, we define the line of contact of the cylinder with the horizontal plane to be the $z$-axis, at $x=y=0$. Then, the condition of rolling without slipping for the cylinder is that when it has rolled (positive) distance $X$, the initial line of contact has rotated through angle $\phi=X / R$, clockwise with respect to the vertical, as shown in the figure below. This rolling constraint can be written as,

$$
\begin{equation*}
X=R \phi \tag{1}
\end{equation*}
$$



[^0]If the slab rolls without slipping such that a line (in the $x-y$ plane) from the center of the cylinder to the point of contact with the slab angle $\theta$ (positive clockwise) to the vertical, then the initial point of contact of the slab is at distance $b$ from the original point, and the initial point of contact of the cylinder has rotated by angle $\phi$. The second rolling constraint is that distance $b$ on the slab equals arc length $R(\phi-\theta)$ on the cylinder,

$$
\begin{equation*}
b=R(\phi-\theta) . \tag{2}
\end{equation*}
$$

The vertical center of the cylinder is at $Y=R$, and the center of the slab is at,

$$
\begin{equation*}
x=X+(a+R) \sin \theta+R(\phi-\theta) \cos \theta], \quad y=R+(a+R) \cos \theta-R(\phi-\theta) \sin \theta . \tag{3}
\end{equation*}
$$

Altogether there are 4 constraints on the 6 degree of freedom $(x, y, X, Y, \phi, \theta)$, of the two-dimensional motion of the system, such that there are only two independent degrees of freedom, which we take to be the angles $\phi$ and $\theta$.

### 2.2 Energy

The total energy $E=T+V$ is conserved, where the potential energy $V$ (taken to be zero when $\phi=\phi_{0}$ and $\theta=\theta_{0}$ ),

$$
\begin{equation*}
V=m g\left(y-y_{0}\right)=m g\left\{(a+R)\left(\cos \theta-\cos \theta_{0}\right)-R\left[(\phi-\theta) \sin \theta-\left(\phi_{0}-\theta_{0}\right) \sin \theta_{0}\right]\right\}, \tag{4}
\end{equation*}
$$

depends on both coordinates $\phi$ and $\theta .{ }^{3}$
The kinetic energy of cylinder, whose axis is at $(X, Y)$, is,

$$
\begin{equation*}
T_{\mathrm{cyl}}=\frac{M \dot{X}^{2}}{2}+\frac{I_{\mathrm{cyl}} \dot{\phi}}{2}=\frac{1+K}{2} M R^{2} \dot{\phi}^{2} \tag{5}
\end{equation*}
$$

using the rolling constraint (1) and the expression $I_{\text {cyl }}=K M R^{2}$ for the moment of inertia $I_{\text {cyl }}$ in terms of parameter $K$.

The kinetic energy of the slab, whose axis is at $(x, y)$, is, using $I_{\text {slab }}=k m a^{2}$,

$$
\begin{equation*}
T_{\text {slab }}=\frac{m\left(\dot{x}^{2}+\dot{y}^{2}\right)}{2}+\frac{I_{\text {slab }} \dot{\theta}^{2}}{2}=\frac{m\left(\dot{x}^{2}+\dot{y}^{2}\right)}{2}+\frac{k m a^{2} \dot{\theta}^{2}}{2} \tag{6}
\end{equation*}
$$

From eq. (3) we have,

$$
\begin{align*}
\dot{x} & =(a+R) \cos \theta \dot{\theta}-R(\phi-\theta) \sin \theta \dot{\theta}+R(\dot{\phi}-\dot{\theta}) \cos \theta  \tag{7}\\
\dot{y} & =-(a+R) \sin \theta \dot{\theta}-R(\phi-\theta) \cos \theta \dot{\theta}-R(\dot{\phi}-\dot{\theta}) \sin \theta \tag{8}
\end{align*}
$$

so the kinetic energy of the slab can be written as,

$$
\begin{align*}
T_{\text {slab }} & =\frac{m}{2}\left[(a+R)^{2} \dot{\theta}^{2}+R^{2}(\phi-\theta)^{2} \dot{\theta}^{2}+R^{2}(\dot{\phi}-\dot{\theta})^{2}+2 R(a+R) \dot{\theta}(\dot{\phi}-\dot{\theta})\right]+\frac{k m a^{2} \dot{\theta}^{2}}{2} \\
& =\frac{m}{2}\left[(1+k) a^{2} \dot{\theta}^{2}+R^{2}(\phi-\theta)^{2} \dot{\theta}^{2}+2 a R \dot{\theta} \dot{\phi}+R^{2} \dot{\phi}^{2}\right] . \tag{9}
\end{align*}
$$

The total kinetic energy $T_{\text {cyl }}+T_{\text {slab }}$ is,

$$
\begin{equation*}
T=\frac{[m+(1+K) M] R^{2}}{2} \dot{\phi}^{2}+m a R \dot{\phi} \dot{\theta}+\frac{(1+k) m a^{2}+m R^{2}(\phi-\theta)^{2}}{2} \dot{\theta}^{2} \tag{10}
\end{equation*}
$$

[^1]
### 2.3 Equations of Motion

### 2.3.1 $\phi$

The $\phi$-equation for the Lagrangian $\mathcal{L}=T-V$ is,

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}=[m+(1+K) M] R^{2} \ddot{\phi}+m a R \ddot{\theta}=\frac{\partial \mathcal{L}}{\partial \phi}=m g R \sin \theta \tag{11}
\end{equation*}
$$

### 2.3.2 $\theta$

The $\theta$-equation can be written as,

$$
\begin{align*}
\frac{1}{m} \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} & =a R \ddot{\phi}+\left[(1+k) a^{2}+R^{2}(\phi-\theta)^{2}\right] \ddot{\theta}+2 R^{2}(\phi-\theta)(\dot{\phi}-\dot{\theta}) \dot{\theta} \\
& =\frac{1}{m} \frac{\partial \mathcal{L}}{\partial \theta}=g[(a+R) \sin \theta+R(\phi-\theta) \cos \theta-R \sin \theta] \\
& =g[a \sin \theta+R(\phi-\theta) \cos \theta] \tag{12}
\end{align*}
$$

## $2.4 \phi=\phi_{0}=$ Constant

Before discussing the general case, we consider the special case that the cylinder is fixed, but the initial angle $\phi_{0}$ in not necessarily zero.

Then, the $\phi$-equation of motion (11) is to be ignored, and the $\theta$-equation (12) becomes,

$$
\begin{equation*}
\left[(1+k) a^{2}+R^{2}\left(\phi_{0}-\theta\right)^{2}\right] \ddot{\theta}-2 R^{2}\left(\phi_{0}-\theta\right) \dot{\theta}^{2}=g\left[a \sin \theta+R\left(\phi_{0}-\theta\right) \cos \theta\right] . \tag{13}
\end{equation*}
$$

The potential energy (4) becomes,

$$
\begin{equation*}
\frac{V}{m}=g\left\{(a+R)\left(\cos \theta-\cos \theta_{0}\right)-R\left[\left(\phi_{0}-\theta\right) \sin \theta-\left(\phi_{0}-\theta_{0}\right) \sin \theta_{0}\right]\right\} \tag{14}
\end{equation*}
$$

the kinetic energy (10) becomes,

$$
\begin{equation*}
\frac{T}{m}=\frac{(1+k) a^{2}+R^{2}\left(\phi_{0}-\theta\right)^{2}}{2} \dot{\theta}^{2} \tag{15}
\end{equation*}
$$

and the total energy becomes,

$$
\begin{align*}
\frac{E}{m}= & \frac{(1+k) a^{2}+R^{2}\left(\phi_{0}-\theta_{0}\right)^{2}}{2} \dot{\theta}_{0}^{2}=\frac{(1+k) a^{2}+R^{2}\left(\phi_{0}-\theta\right)^{2}}{2} \dot{\theta}^{2} \\
& +g\left\{(a+R)\left(\cos \theta-\cos \theta_{0}\right)-R\left[\left(\phi_{0}-\theta\right) \sin \theta-\left(\phi_{0}-\theta_{0}\right) \sin \theta_{0}\right]\right\} . \tag{16}
\end{align*}
$$

### 2.4.1 Small Oscillations

We first seek an oscillatory solution, of the form,

$$
\begin{equation*}
\theta=\theta_{0}+\alpha e^{i \omega t}, \quad \dot{\theta}=i \alpha \omega e^{i \omega t}, \quad \ddot{\theta}=-\alpha \omega^{2} e^{i \omega t} \tag{17}
\end{equation*}
$$

where $\alpha$ is small. Using this trial solution in eq. (13), and keeping terms only to order $\alpha$, we have,

$$
\begin{align*}
& \sin \theta \approx \sin \theta_{0}+\alpha e^{i \omega t} \cos \theta_{0}, \quad \cos \theta \approx \cos \theta_{0}-\alpha e^{i \omega t} \sin \theta_{0}  \tag{18}\\
&-\alpha \omega^{2}\left[(1+k) a^{2}+R^{2}\left(\phi_{0}-\theta_{0}\right)^{2}\right] e^{i \omega t} \\
& \approx g\left[a\left(\sin \theta_{0}+\alpha e^{i \omega t} \cos \theta_{0}\right)+R\left(\phi_{0}-\theta_{0}-\alpha e^{i \omega t}\right)\left(\cos \theta_{0}-\alpha e^{i \omega t} \sin \theta_{0}\right)\right]  \tag{19}\\
& \approx g\left[a \sin \theta_{0}+R\left(\phi_{0}-\theta_{0}\right) \cos \theta_{0}\right]+\alpha g\left[a \cos \theta_{0}-R\left(\phi_{0}-\theta_{0}\right) \sin \theta_{0}-R \cos \theta_{0}\right] e^{i \omega t} .
\end{align*}
$$

The constant term must be zero, which tells us that,

$$
\begin{equation*}
\tan \theta_{0}=\frac{R}{a}\left(\theta_{0}-\phi_{0}\right)=-\frac{b_{0}}{a}, \tag{20}
\end{equation*}
$$

recalling eq. (2).
The terms in $\alpha e^{i \omega t}$ must be the same on both sides of eq. (19), which tells us that the angular frequency $\omega$ of small oscillations is related by,

$$
\begin{equation*}
\omega=\sqrt{\frac{g\left\{R\left[\cos \theta_{0}-\left(\theta_{0}-\phi_{0}\right) \sin \theta_{0}\right]-a \cos \theta_{0}\right\}}{(1+k) a^{2}+R^{2}\left(\phi_{0}-\theta_{0}\right)^{2}}}=\sqrt{\frac{g\left(R \cos \theta_{0}-a / \cos \theta_{0}\right)}{a^{2}\left(1+k+\tan ^{2} \theta_{0}\right)}} . \tag{21}
\end{equation*}
$$

Oscillatory solutions exist only for,

$$
\begin{equation*}
R>\frac{a}{\cos ^{2} \theta_{0}}, \quad \cos \theta_{0}<\sqrt{\frac{a}{R}} \tag{22}
\end{equation*}
$$

which always requires that $R>a$.
In particular, $\omega=\sqrt{g(R-a) / a^{2}(1+k)}$ for $\phi_{0}=0=\theta_{0}$. For this case, the constant energy is,

$$
\begin{equation*}
\frac{E}{m}=\frac{(1+k) a^{2}}{2} \dot{\theta}_{0}^{2}=\frac{(1+k) a^{2}}{2} \dot{\theta}^{2}-g(a+R)(1-\cos \theta), \tag{23}
\end{equation*}
$$

and we record the full equation of motion,

$$
\begin{equation*}
\left.\left[(1+k) a^{2}+R^{2} \theta^{2}\right] \ddot{\theta}+2 R^{2} \theta\right) \dot{\theta}^{2}=g[a \sin \theta-R \theta \cos \theta] . \tag{24}
\end{equation*}
$$

For reference, we also record that in this case,

$$
\begin{align*}
\dot{\theta}^{2} & =\dot{\theta}_{0}^{2}+\frac{2 g(a+R)(1-\cos \theta)}{(1+k) a^{2}}  \tag{25}\\
{\left[(1+k) a^{2}+R^{2} \theta^{2}\right] \ddot{\theta} } & =g(a \sin \theta-R \theta \cos \theta)-2 R^{2} \theta\left(\dot{\theta}_{0}^{2}+\frac{2 g(a+R)(1-\cos \theta)}{(1+k) a^{2}}\right) \tag{26}
\end{align*}
$$

For a solid slab of half width $c, k=\left(1+c^{2} / a^{2}\right) / 3$, so for $\phi_{0}=0=\theta_{0}$,

$$
\begin{equation*}
\omega=\sqrt{\frac{3 g(R-a)}{4 a^{2}+c^{2}}} \stackrel{\text { solid }}{\text { cube }} \sqrt{\frac{3 g(R-a)}{5 a^{2}}} . \tag{27}
\end{equation*}
$$

Note that it is possible to have small oscillations about a nonzero value of $\theta_{0}$, if the slab is appropriately off center with respect to the initial point of contact with the cylinder. For example, a cube of half length $a=R / 2$ would oscillate about an initial configuration with $b_{0}=-\sqrt{3} R / 6, \theta_{0}=30^{\circ}$ and $\phi_{0}=15^{\circ}$ at angular frequency $\omega=\sqrt{2 g / \sqrt{3} R}=1.075 \sqrt{g / R}$. This is about $2 \%$ less than the angular frequency $\omega=\sqrt{6 g / 5 R}=1.095 \sqrt{g / R}$ for $\theta_{0}=0$.

### 2.4.2 Angle $\theta_{s}$ at which the Slab Falls off the Cylinder

As the slab rotates it may lose contact with (separate from) the cylinder, say at angle $\theta_{s}$.
This happens when the normal force $N_{12}$ of the cylinder on the slab vanishes, which occurs when the component of the gravitational force $m g$ equals the component of $m$ a along an axis that makes angle $\theta_{s}$ to the vertical,

$$
\begin{equation*}
m g \cos \theta_{s}=m\left(-\ddot{x}_{s} \sin \theta_{s}-\ddot{y}_{s} \cos \theta_{s}\right) . \tag{28}
\end{equation*}
$$



From eqs. (7)-(8), we find,

$$
\begin{align*}
& \ddot{x}=(a+R)\left(\cos \theta \ddot{\theta}-\sin \theta \dot{\theta}^{2}\right)-R\left[(\phi-\theta)\left(\sin \theta \ddot{\theta}+\cos \theta \dot{\theta}^{2}\right)+\sin \theta \dot{\theta}(\dot{\phi}-\dot{\theta})\right] \\
&+R[\cos \theta(\ddot{\phi}-\ddot{\theta})-\sin \theta \dot{\theta}(\dot{\phi}-\dot{\theta})],  \tag{29}\\
& \ddot{y}=-(a+R)\left(\sin \theta \ddot{\theta}+\cos \theta \dot{\theta}^{2}\right)-R\left[(\phi-\theta)\left(\cos \theta \ddot{\theta}-\sin \theta \dot{\theta}^{2}\right)+\cos \theta \dot{\theta}(\dot{\phi}-\dot{\theta})\right] \\
&-R[\sin \theta(\ddot{\phi}-\ddot{\theta})+\cos \theta \dot{\theta}(\dot{\phi}-\dot{\theta})],  \tag{30}\\
& \ddot{x} \sin \theta+\ddot{y} \cos \theta=-(a+R) \dot{\theta}^{2}-R[(\phi-\theta) \ddot{\theta}+\dot{\theta}(\dot{\phi}-\dot{\theta})]-R \dot{\theta}(\dot{\phi}-\dot{\theta}) \\
&=-R(\phi-\theta) \ddot{\theta}+(R-a) \dot{\theta}^{2}-2 R \dot{\phi} \dot{\theta} . \tag{31}
\end{align*}
$$

For constant angle $\phi_{0}$, the relation (28) becomes,

$$
\begin{equation*}
g \cos \theta_{s}=R\left(\phi_{0}-\theta_{s}\right) \ddot{\theta}_{s}-(R-a) \dot{\theta}_{s}^{2} . \tag{32}
\end{equation*}
$$

Equations (13) and (16) can be used in eq. (32) to determine $\ddot{\theta}_{s}$ and $\dot{\theta}_{s}$, but the resulting expression is lengthy. Even for the particular case that $\phi_{0}=0=\theta_{0}$, the resulting expression for $\theta_{s}$ is complicated,

$$
\begin{align*}
g \cos \theta_{s}= & \frac{R \theta_{s}}{(1+k) a^{2}+R^{2} \theta_{s}^{2}}\left[2 R^{2} \theta_{s}\left(\dot{\theta}_{0}^{2}+\frac{2 g(a+R)\left(1-\cos \theta_{s}\right)}{(1+k) a^{2}}+g\left(R \theta_{s} \cos \theta_{s}-a \sin \theta_{s}\right)\right)\right] \\
& -(R-a)\left(\dot{\theta}_{0}^{2}+\frac{2 g(a+R)\left(1-\cos \theta_{s}\right)}{(1+k) a^{2}}\right) \tag{33}
\end{align*}
$$

One conclusion that can be drawn is that for $R \gg a$ the (thin) slab will not fall off the (large) cylinder (which is perhaps obvious without the preceding analysis).

### 2.5 Both $\phi$ and $\theta$ Vary

### 2.5.1 Coupled Oscillations

We first consider the possibility of small, coupled oscillations in both $\phi$ and $\theta$, with equilibrium angles $\phi_{0}$ and $\theta_{0}$.

We seek an oscillatory solution of the form (17)-(18) for $\theta$, and,

$$
\begin{equation*}
\phi=\phi_{0}+\beta e^{i \omega t} \tag{34}
\end{equation*}
$$

where $\beta$ is small, for $\phi$. To use these trial solutions in eqs. (11)-(12), we have in addition to eq. (18) that,

$$
\begin{equation*}
\sin \phi \approx \sin \phi_{0}+\beta e^{i \omega t} \cos \phi_{0}, \quad \cos \phi \approx \cos \phi_{0}-\beta e^{i \omega t} \sin \phi_{0} \tag{35}
\end{equation*}
$$

Then, keeping terms only that are constant or proportional to $e^{i \omega t},{ }^{4}$ the $\theta$-equation of motion (12) becomes,

$$
\begin{align*}
& -\omega^{2} \beta a R e^{i \omega t}-\omega^{2} \alpha e^{i \omega t}\left[(1+k) a^{2}+R^{2}\left(\phi_{0}-\theta_{0}\right)^{2}\right] \\
\approx & g\left\{a\left(\sin \theta_{0}+\alpha e^{i \omega t} \cos \theta_{0}\right)+R\left[\phi_{0}-\theta_{0}+(\beta-\alpha) e^{i \omega t}\right]\left(\cos \theta_{0}-\alpha e^{i \omega t} \sin \theta_{0}\right)\right\} . \tag{36}
\end{align*}
$$

The constant term in eq. (36) must be zero, which again tells us that,

$$
\begin{equation*}
\tan \theta_{0}=\frac{R}{a}\left(\theta_{0}-\phi_{0}\right)=-\frac{b_{0}}{a} . \tag{37}
\end{equation*}
$$

The terms in $e^{i \omega t}$ must be the same on both sides of eq. (36), which tells us that,

$$
\begin{align*}
& \omega^{2}\left[\beta a R+\alpha(1+k) a^{2}+\alpha R^{2}\left(\phi_{0}-\theta_{0}\right)^{2}\right] \\
= & g\left\{R\left[(\alpha-\beta) \cos \theta_{0}-\alpha\left(\theta_{0}-\phi_{0}\right) \sin \theta_{0}\right]-\alpha a \cos \theta_{0}\right\} \\
= & g\left[R(\alpha-\beta) \cos \theta_{0}-\alpha a / \cos \theta_{0}\right] . \tag{38}
\end{align*}
$$

To go further, we now consider the $\phi$-equation (11),

$$
\begin{equation*}
-\omega^{2} e^{i \omega t}\left\{\beta[m+(1+K) M] R^{2}+\alpha m a R\right\} \approx m g R\left(\sin \theta_{0}+\alpha e^{i \omega t} \cos \theta_{0}\right) \tag{39}
\end{equation*}
$$

The constant term in eq. (39) must vanish, which implies that coupled oscillations are only possible for $\theta_{0}=0$. Then, from eq. (37) we have that $\phi_{0}=b_{0}$ also, and eq. (38) becomes

$$
\begin{equation*}
\omega^{2}\left[\beta a R+\alpha(1+k) a^{2}\right]=g[R(\alpha-\beta)-\alpha a] . \tag{40}
\end{equation*}
$$

In addition, the terms in $e^{i \omega t}$ on the left and right sides of eq. (39) must be the same, which implies that,

$$
\begin{equation*}
-\omega^{2}\left\{\beta[m+(1+K) M] R^{2}+\alpha m a R\right\}=\alpha m g R \tag{41}
\end{equation*}
$$

This condition cannot be satisfied, so there is no coupled oscillatory motion when the cylinder is free to roll; it will always roll out from under the slab, which rotates until it falls off the cylinder at some angle $\theta_{s}$ of separation. An analysis of angle $\theta_{s}$ could be given via an extension of the discussion in sec. 2.4.2, but we will not pursue this here.

[^2]
### 2.5.2 Small Oscillations of the Slab

We next consider the possibility that as the cylinder rolls the slab executes small oscillatory motion in $\theta$, with an angular frequency that varies "slowly" with time. In the "instantaneous" approximation, the angular frequency $\omega(t)$ is just that associated with that found in sec. 2.4 for $\phi_{0}=\phi(t)$.

It does not appear that analytic techniques are especially helpful in the next approximation, such that it is best to use numerical integration of the equations of motion (11)-(12) to carry the discussion further.

## References

[1] K.T. McDonald, Cylinder Rolling on a Rolling Cylinder, (Oct. 2, 2014), http://kirkmcd.princeton.edu/examples/2cylinders.pdf
[2] K.T. McDonald, Cylinder Rolling inside Another Rolling Cylinder, (Oct. 21, 2014), http://kirkmcd.princeton.edu/examples/2cylinders_in.pdf
[3] K.T. McDonald, Motion of a Rigid Body Which is Rolling without Slipping, Princeton U. Ph205 Lecture 20 (1980), http://kirkmcd.princeton.edu/examples/Ph205/ph205120.pdf


[^0]:    ${ }^{1}$ Either the "slab" or the "cylinder" (but not both) could have a very large moment of inertia if it is in the form of a "bobbin" with flanges that extend beyond the supporting surface.
    ${ }^{2}$ The author's interest in such problems was inspired in part by Bob Dylan: "It balances on your head just like a mattress balances on a bottle of wine." (Leopardskin Pill-Box Hat, 1966).

[^1]:    ${ }^{3}$ This contrasts with the case of a cylinder rolling on/inside another cylinder $[1,2]$, where the potential energy does not depend on $\phi$, such that there is a second conserved quantity for the system.

[^2]:    ${ }^{4}$ We will not consider terms in $e^{2 i \omega t}$ since the approximations $(18)$ and $(35)$ have omitted terms of this type.

