Charging a Capacitor via a Transient RLC Circuit

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(March 6, 2009)

1 Problem

Discuss the time evolution of various forms of energy a series RLC circuit that is energized at time $t = 0$ by a battery of voltage V. Include consideration of radiated energy, supposing that the circuit has the form of a circular loop of radius a.

This problem relates to the question of whether a capacitor can be charged without loss of energy. As confirmed in sec. 2.1, if the capacitor is charged to voltage V in a simple RC circuit, then the resistor dissipates energy equal to that eventually stored in the capacitor. Heinrich [1] noted that this energy loss could be avoided if the battery is replaced by a variable power supply whose voltage is raised “slowly” to the desired value V. See also [2, 3]. If one capacitor is charged by another in a circuit with negligible resistance, there is again a loss of energy, to radiation in this case [4, 5, 6].

These analyses leave open the question of whether energy loss is inevitable whenever a capacitor is charged “quickly”. Show that a capacitor can be charged with only modest energy loss in an underdamped series RLC circuit if the battery is disconnected after $1/2$ cycle.

2 Solution

Energy flows from the battery into four forms: the I^2R heating of the resistor, the electrostatic energy $U_C = CV^2/2$ that remains stored in the capacitor once the transient current has died out, the energy $U_L(t) = LI^2/2$ that is temporarily stored in the inductor while the current is nonzero, and the energy radiated away while the current in the circuit is changing. We assume that radius a of the circuit is small compared to the wavelength of all significant frequency components of the radiation, so that the current I is independent of position around the circuit and the radiation is well approximated as that associated with the magnetic dipole moment,

$$m(t) = \pi a^2 I(t),$$

namely,

$$\frac{dU_{\text{rad}}}{dt} = \frac{1}{6\pi c^4} \sqrt{\frac{\mu_0}{\epsilon_0}} m^2 = 2.4 \times 10^{-32} a^4 I^2.$$

The Kirchhoff equation for the series RLC circuit is,

$$V = LI + IR + \frac{Q}{C},$$

1The stored energy is $Q^2/2C \propto (\int I dt)^2$, while the energy dissipated is $\int I^2 R dt$. So if the current I is smaller and lasts for a longer time, the stored energy can be the same but the energy dissipated will be less. To obtain a lower current in the circuit, the voltage applied during the characteristic time interval for energy dissipation must be smaller; hence the prescription to raise the voltage slowly.
whose time derivative is,

\[0 = LI + IR + \frac{I}{C}. \]

We seek solutions of the form \(e^{-\alpha t}\), for which eq. (4) leads to the quadratic equation,

\[L\alpha^2 - R\alpha + \frac{1}{C} = 0, \]

whose solutions are,

\[\alpha_{1,2} = \frac{R}{2L} \pm \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}} = \frac{R}{2L} \pm i \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}. \]

The current in the circuit is zero at time \(t = 0\) when the battery is connected to the circuit (and it cannot jump instantaneously to a nonzero value because of the inductor). Hence, the total current in the circuit can be written as,

\[I(t) = I_0(e^{-\alpha_1 t} - e^{-\alpha_2 t}) = 2I_0e^{-Rt/2L} \sinh \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}} t = 2iI_0e^{-Rt/2L} \sin \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} t. \]

Just after the battery is connected, the voltage drops across the resistor and capacitor are still zero, so the initial voltage drop across the inductor is related by,

\[V = LI(0) = LI_0(\alpha_2 - \alpha_1) = I_0 \sqrt{R^2 - \frac{4L}{C}} = iI_0 \sqrt{\frac{4L}{C} - R^2}. \]

We now consider the cases that \(R\) is larger or smaller than \(2\sqrt{L/C}\).

2.1 Overdamped Circuit: \(R > 2\sqrt{L/C}\)

In this case the current is given by,

\[I(t) = \frac{V}{\sqrt{R^2 - \frac{4L}{C}}} (e^{-\alpha_1 t} - e^{-\alpha_2 t}) = \frac{V}{\sqrt{\frac{R^2}{4L^2} - \frac{1}{C}}} e^{-Rt/2L} \sinh \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}} t. \]

The energy temporarily stored in the inductor at time \(t\) is,

\[U_L(t) = \frac{LI^2}{2} = \frac{V^2L}{2} \frac{1}{\sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}}} e^{-Rt/L} \sinh^2 \sqrt{R^2/4L^2} - \frac{1}{LC} t. \]

For large resistance \(R\) the inductive energy reaches a maximum of \(U_{L,\text{max}} \approx UC\sqrt{4L/C} \gg UC\) at time \(t \approx (L/R) \ln(R^2C/L)\).

The power dissipated in the resistor is,

\[\frac{dU_{\text{joule}}}{dt} = I^2R = \frac{V^2R}{R^2 - \frac{4L}{C}} (e^{-2\alpha_1 t} - 2e^{-(\alpha_1 + \alpha_2)t} + e^{-2\alpha_2 t}), \]
and the total energy dissipated after a long time is,

$$U_{\text{Joule}} = \frac{V^2 R}{R^2 - \frac{4L}{C}} \left(\frac{1}{2\alpha_1} - \frac{2}{\alpha_1 + \alpha_2} + \frac{1}{2\alpha_2}\right) = \frac{V^2 R}{R^2 - \frac{4L}{C}} \left(\frac{RC}{2} - \frac{2L}{R}\right) = \frac{CV^2}{2} = U_C, \quad (12)$$

where $U_C = CV^2/2$ is the energy stored in the capacitor at large time t.

The radiated power is obtained from eqs. (2) and (9),

$$\frac{dU_{\text{rad}}}{dt} = 2.4 \times 10^{-32} a^4 \frac{V^2}{R^2 - \frac{4L}{C}} \left(\frac{\alpha_1^2}{2} - 2\alpha_1\alpha_2 e^{-(\alpha_1+\alpha_2)t} + \frac{\alpha_2^2}{2} e^{-2\alpha_2 t}\right), \quad (13)$$

and the total radiated power after a long time is,

$$U_{\text{rad}} = 2.4 \times 10^{-32} a^4 \frac{V^2}{R^2 - \frac{4L}{C}} \left(\frac{\alpha_1}{2} - \frac{2\alpha_1\alpha_2}{\alpha_1 + \alpha_2} + \frac{\alpha_2}{2}\right) = 2.4 \times 10^{-32} a^4 \frac{U_C}{RLC}. \quad (14)$$

In principle the radiated energy can become large if the inductance is very small such that the second derivative \ddot{I} becomes very large. However, the inductance of a loop of radius a made of wire of radius b is $L \approx \mu_0 a \ln(a/b)$, so the radiated power is bounded by,

$$U_{\text{rad}} \lesssim 3 \times 10^{-38} a^5 \ln \frac{1}{b} \frac{1}{RC} U_C, \quad (15)$$

(in SI units). In any practical, transient RLC circuit the radiated energy is negligible.

In sum, when a capacitor is charged via an overdamped RLC circuit, as much energy is lost to Joule heating as ends up stored in the capacitor.

2.2 Underdamped Circuit: $R < 2\sqrt{L/C}$

In this case the current is given by,

$$I(t) = \frac{V}{i\sqrt{\frac{4L}{C} - R^2}} (e^{-\alpha_1 t} - e^{-\alpha_2 t}) = \frac{V}{\omega L} e^{-Rt/2L} \sin \omega t, \quad (16)$$

where,

$$\omega = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}. \quad (17)$$

The energy temporarily stored in the inductor at time t is,

$$U_{\text{L}}(t) = \frac{LI^2}{2} = \frac{V^2}{2\omega^2 L} e^{-Rt/L} \sin^2 \omega t. \quad (18)$$

For small resistance R the inductive energy reaches a maximum of $U_{L,\text{max}} \approx U_C$ at time $t \approx \pi / 2\omega \approx \pi \sqrt{LC}/2$.

The charge $Q(t)$ on the capacitor at time t is,

$$Q(t) = \int_0^t I(t) \, dt = \frac{V}{\omega^2 L} \int_0^{\omega t} e^{-Rx/2\omega L} \sin x \, dx$$

$$= \frac{V}{\omega^2 L} \frac{1}{1 + R^2/4\omega^2 L^2} \left[1 - e^{-Rt/2L} \left(\frac{R}{2\omega L} \sin \omega t + \cos \omega t\right)\right]$$

$$= VC \left[1 - e^{-Rt/2L} \left(\frac{R}{2\omega L} \sin \omega t + \cos \omega t\right)\right]. \quad (19)$$
The energy \(U_C(t) \) stored in the capacitor at time \(t \) is,

\[
U_C(t) = \frac{Q^2(t)}{2C} = U_C \left[1 - e^{-Rt/2L} \left(\frac{R}{2\omega L} \sin \omega t + \cos \omega t \right) \right]^2.
\] (20)

The power dissipated in the resistor is,

\[
\frac{dU_{\text{Joule}}}{dt} = I^2 R = \frac{V^2 R}{\omega^2 L^2} e^{-Rt/L} \sin^2 \omega t,
\] (21)

and the energy \(U_{\text{Joule}}(t) \) dissipated in the resistor up to time \(t \) is,

\[
U_{\text{Joule}}(t) = \frac{V^2 R}{\omega L^2} \int_0^t e^{-Rx/\omega L} \sin^2 x \, dx
= U_C \left[1 - e^{-Rt/L} \left(1 + \frac{R^2 \sin^2 \omega t}{2\omega^2 L^2} + \frac{R}{2\omega L} \sin 2\omega t \right) \right].
\] (22)

For large \(t \) the energy dissipated equals the energy stored. However, the battery could be disconnected from the circuit whenever the current is zero, i.e., at \(t = n\pi/\omega \). In particular, if the battery were disconnected at time \(t = \pi/\omega \), we would have,

\[
\frac{U_{\text{Joule}}(\pi/\omega)}{U_C(\pi/\omega)} = \frac{1 - e^{-\pi R/\omega L}}{1 + e^{-\pi R/2\omega L}} \approx \frac{\pi R}{2\sqrt{L/C}},
\] (23)

where the approximation holds for small resistance \(R \). That is, the capacitor can be charged with only small loss of energy to Joule heating by use of a large \(L \), small \(R \), and connecting the battery for only 1/2 of a (damped) cycle. As a bonus, the resulting voltage on the capacitor is nearly twice that of the battery.

When \(R \ll \sqrt{L/C} \) the second time derivative of the current is,

\[
\ddot{I}(t) \approx \frac{V\omega}{L} e^{-Rt/2L} \sin \omega t.
\] (24)

The radiated power is obtained from eqs. (2) and (24),

\[
\frac{dU_{\text{rad}}}{dt} \approx 2.4 \times 10^{-32} a^4 \frac{V^2 \omega^2}{L^2} e^{-Rt/L} \sin^2 \omega t,
\] (25)

and the total radiated power up to time \(t \) is,

\[
U_{\text{rad}}(t) \approx 2.4 \times 10^{-32} a^4 \frac{U_C}{R L C} (1 - e^{-Rt/L}).
\] (26)

Then,

\[
U_{\text{rad}}(\pi/\omega) \approx 2 \times 10^{-32} a^4 \frac{\pi U_C}{L \sqrt{L/C}} \ll U_C.
\] (27)

Again, the radiation in this transient \(RLC \) circuit is negligible.

In sum, while a capacitor that is charged for long times in an underdamped \(RLC \) circuit stores only as much energy as is lost to Joule heating, if the battery is disconnected after 1/2 cycle, the stored energy can be large compared to the energy lost to heat and radiation.
Acknowledgment

Thanks to Jerry Gibson for suggesting this problem.

References

