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1 Problem

Discussions of the radiation-reaction force are typically in the context of a single, free (i.e.,
not bound in an atom) electric charge that accelerates due to an external force, where part
of the external force is identified as the means of transmission to the charge of the power
that is radiated. This identification is accomplished via an invocation of Newton’s 3rd law,
and so the force in question is called a reaction force.

In technological practice, the conduction electrons in metals is the most common exam-
ple of “free” charges, and electromagnetic radiation of “free” charges is most often realized
using antennas. The latter are conducting structures with time-dependent (typically, oscil-
lating) currents whose geometry permits constructive interference among the radiation of
the individual accelerating charges.!

In antenna theory, the requirement that the source of the oscillating currents provide the
radiated power is summarized by assigning a radiation resistance R,.q to the antenna, as if
the antenna were a two-terminal device with a characteristic impedance,

Z = ROhmic + Rragq + Z.)(amtennam (1)

where Ropmic is the ordinary resistance of the conductors of the antenna as measured at its
terminals, and Xantenna 18 the (capacitive and inductive) reactance of the antenna. That is, if
an oscillating voltage V = Ve ™? of angular frequency w were applied across the terminals
of the antenna (by an appropriate transmission line from the power source), the resulting
current (at the terminals) would be I = Ipe™™' = V/Z. The total time-average power
“dissipated” by the antenna is then,

1 1 VK
Ptotal - iRe(VI*) = §R€(II*Z) = 50 (ROhmic + Rrad) = POhmic + Prad- (2)

Thus, the radiation resistance of an antenna is given in terms of its time-average radiated
power and the peak current at its terminals by,

_ I
Puag = = Reaa. (3)

Discuss the relation between the radiation-reaction force on single charges and the radia-
tion resistance of an antenna, using as examples a small, linear, center-fed dipole antenna of
length L A = 2mwc/w, where c¢ is the speed of light, and also a small circular loop antenna of

!'Time-independent currents that flow in loops consist of accelerating charges whose radiation fields are
totally canceled by destructive interference. See prob. 9 of [1] for further discussion of this point.



circumference L < A. Note that the small loop emits magnetic-dipole radiation, so that the
radiation-reaction forces in this case are not the same as those based on the usual assumption
of electric-dipole radiation.

In this problem you may take advantage of the fact that the radiation from a small
antenna is well described by an approximation that ignores its conductivity and simply
supposes a geometric pattern of the oscillating current which is completely in phase with the
drive voltage.

2 Solution

The apparent success of the solutions given below for small antennas is surprising in view of
the “radiation paradox” [2, 3],% that for good conductors the electric field can have little/no
component parallel to the surface of the conductors, and consequently the Poynting vector [5]
can have little/no component perpendicular to the conductors. Thus, in the usual accounting
of flow of electromagnetic energy, no energy leaves the conductors normal to their surfaces
(although some energy enters the conductors normally to sustain the Ohmic losses within).
In the Maxwellian view, an antenna is merely a special kind of wave guide that shapes the
angular distribution of power that is transmitted from a source (which must include some
material other than good conductors) into the far zone.

2.1 The Radiation-Reaction Force on a Single Charge

When an external force F. is applied to a mass m, that mass accelerates according to
Newton’s 2nd law,
Fext = ma = mv, (4)

where c is the speed of light in vacuum, and we assume that the magnitude of the velocity v
obeys v < ¢ throughout this problem. As a result, the kinetic energy muv?/2 of the particle

changes, and we have,
d (muv?
Fex . = V= — R — .
L V=mvV-Vv dt( 5 ) (5)

That is, the power supplied by the external force goes into increasing the kinetic energy of
the mass.

If, however, the mass m carries electric charge e, then the accelerated charge radiates
power at the rate,
2¢%a?
— 5 (6)

3c3

according to the Larmor formula [6]. Assuming that the mass has no internal energy,® the
radiated power must come from the source that provides the external force. Thus, we are

Prad -

2For further discussion of the radiation paradox, see [4].

3This assumption is not valid in general, because the (near) electromagnetic field of the charge stores
energy. For periodic motion, the time average of this stored energy is constant, and the radiated energy
must come from elsewhere. However, the interpretation of the radiation reaction for nonperiodic motion,
beginning with Schott [7], is that part of the radiated energy comes from external sources, and part comes
from rearrangement of the electromagnetic energy associated with the charge.



led to modify eq. (5) in the case of radiation to be,

d [ mv?
Fex' = | 5 Pra- 7
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To determine the partitioning of power from the source between radiation and change in the
charge’s kinetic energy, we follow Planck [8] in supposing that the radiation exerts a reaction
force Fieaet back on the charge, so that eq. (4) should also be modified,*

Fext + Freact = mv. (8)
Projecting eq. (8) onto the velocity v and comparing with eq. (7), we infer that,
Freact V.= —I7ad- (9)

Equation (9) suggests that we might write Fieaet = —FPraaV/v, but this has unacceptable
behavior at small velocities (and violates the principle of Galilean invariance that underlies
Newton’s equations of motion).5 Planck proposed that we evade this difficulty by integrating
eq. (9) over the period 7' = 27 /w in the case of periodic motion, as in the present problem,
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It then appears plausible to identify the radiation-reaction force as,

2e2v
3¢c3

While the result (11) does not obey eq. (9), its average over a period of the motion does.
So, we conclude with Planck that eq. (11) is valid on average, and therefore has good utility
in the case of periodic motion.°

Whether the form (11) is valid at all times, rather than only on average, and whether
it applies to nonperiodic motion and in particular to the case of uniform acceleration, has
been the subject of extensive debate, some of which is reviewed by the author in [16].

Freact -

(v o). (11)

2.2 Small Linear Antenna

We now consider a small, center-fed, linear antenna of length L that extends along the z-axis
from —L/2 to L/2, for which electric-dipole radiation is dominant.

4Planck appears to have been inspired in part by Poincaré’s commentary that Hertz’ observation and
analysis of the generation of electromagnetic waves [11, 12, 13] implies that the apparatus should be subject
to amortissement = damping of the currents and energy due to the emission of radiation.

Plank’s derivation in 1896 was before Larmor [6] published his formula (6), and Planck relied on Hertz’

analysis [12] or radiation by an oscillating charge (oscillating electric dipole).

SEquation (9) is, however, valid for uniform circular motion.

6The force (11) had been found by Lorentz in 1892 [14] during an investigation of the self force of an
extended, accelerated charge, with no mention of radiation. See also Note 18 of [15].



2.2.1 Radiation Resistance via a Conventional Argument

The current I(z, t)has value lpe™** at the feedpoint z = 0, and vanishes at the endpoints of

the antenna, z = +L/2. For L < A, the spatial variation of the current can only be linear,

I(z,t) = Iy ( — L|i/|2) e, (12)

This spatial variation results in an accumulation of charge along the antenna, according to
the equation of continuity,
0 ol 1 :
_p B :F—Oe_ZWt, (13)
ot 0z L/2
so that the charge density p is uniform over each of the two arms of the antenna, but with

opposite signs,
i1y

£ = 4+ —iwt. 14
The electric-dipole moment p of this charge distribution is,
L/ il L

p(t) = / pz dz = ——e ™" 15

—L/2 2w (15)

The time-average radiated power P, follows from the electric-dipole version of the Larmor
formula,

p B _eL?  I§om? (L)2 s

_ _ 0™ — R 1
3¢3 1263 2 3¢ \\ Fraa (16)
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where the radiation resistance of the small dipole antenna is,

o2 (L\? L\’
ol = —(Z) =197(2) Q. 1
Fraa = 757 ()\) 97()\) (17)

2.2.2 Radiation Resistance via the Radiation-Reaction Force

The conduction electrons in the antenna have average velocity,

v(z,t) = vo(2)e ™" = UGN (1 - L—/Q) e ™, (18)

neAy neAy

at position z and time ¢, where n is the number density of the conduction electrons and Ay
is the cross sectional area of the antenna.
The radiation-reaction force (11) on a conduction electron at position z is,
2¢%0(2) 2e%w?vy(2)

_ _ —twt
Freact - 363 - 363 € : (19)

The time-average power delivered to a single electron by the radiation-reaction force (19) is,

e2w?vd(z)

3.3 (20)

1
- §R6(Freactv*) =

4



This power is delivered coherently to all of the conduction electrons in the antenna, so the
total power is the square of the sum of the amplitudes of the power per electron. This
amplitude is the square root of eq. (20), namely ewwvo(z)/v/3¢3. The number of conduction
electrons per unit length along the antenna is nAp, so the total power delivered by the
radiation-reaction force is,
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as found in eq. (16).”

2.3 The Radiation-Reaction Force for Magnetic-Dipole Radiation

We shall consider the case of a small loop antenna (sec. 2.4), in which all electric-multipole
radiation vanishes and magnetic-dipole radiation dominates. We restrict our discussion to
the case that the charges move in a circle of fixed radius r. Then, the contribution of a
charge e with azimuthal velocity,

v =1vpe " ¢ (24)
to the magnetic moment is g = > er x v/2c is,®

rx (25)
= —Tr X V.
l’l‘e 2C

For a magnetic dipole created by oscillating conduction currents in a loop, the azimuthal
acceleration at angular frequency w is much larger than the centripetal acceleration v?/r.

"Recall the “antenna formula” for radiation by a known, time-harmonic current distribution J(x)e=%*
(see, for example, eq. (14-53) of [17]),
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where the approximation holds for small antennas (of size L < A). Thus, for small antennas the total

radiated power is,
2
dPra 1
Poi— / 4 g0 = | / /=5 Re(Fraav*) dVol

which is the method used in eq. (21).

For antennas that are not small compared to a wavelength the present technique does not work. Returning
to the derivation of the radiation reaction force in sec. 2.1, we note that for an extended distribution of
charges, the integration by parts of eq. (10) cannot be carried out, and the radiation reaction force on
individual charges cannot readily be identified. In such cases the total radiation reaction force can still be
deduced as the negative of the rate of radiation of momentum [22].

8We neglect the tiny contribution of the intrinsic magnetic moments of the conduction electrons to the
magnetic moment of the current loop.

: (23)




So, in taking time derivatives we have to a very good approximation,

vV = —iwv. (26)
Thus, . o
B, = 20T X V= —2'2—61' XV, (27)
and,
ﬂe:—i%rx(/:—%rxv:irxi}. (28)

The power of the magnetic-dipole radiation emitted by a single charge with oscillatory az-
imuthal velocity (24) is given by the magnetic version of the Larmor formula,’
P 2it,|? _elr? || _errtut v|?
T3 T 6 6cd '

(29)

According to eq. (9), we identify this expression with the product —Fieact M1 - v, where

Ficact M1 1s the radiation-reaction force appropriate to magnetic-dipole radiation. Thus, we
find,

627,.2(")4

Freact,Ml - _FV- (30)
An alternative derivation that parallels eq. (10) is,
T T 2,2 T 2,2 T 2 T
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from which we infer that,
2,2 2,2 4
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b 6P 6P (32)

The form (32) has also been deduced by Itoh via an expansion of the Liénard-Wiechert
potentials to 4™ order [19].1°

A single charge not at the origin has nonzero electric and magnetic moments of all orders.
If the charge is accelerated, it emits electric and magnetic multipole radiation of all orders,
of which electric-dipole radiation is typically the strongest. The above discussion indicates
that the radiation-reaction force associated with higher-order multipole radiation depends
on higher-order derivatives of the charge’s velocity. In extremes cases, the higher-order
derivatives could be larger than v, such that a higher-order radiation-reaction force is the
largest. This reminds us that Lorentz’ derivation [14, 15] of the self force on an accelerated
charge, which yielded the form (11), this result is only approximate.

9See, for example, sec. 71 of [18].
10Comments on radiation damping for magnetic dipoles also appear in [20, 21].



2.4 Small Loop Antenna

We now consider a circular loop of circumference L < A = 27wc¢/w that carries a current
Ipe~™* which is assumed to be independent of azimuth around the loop. Then, the equation
of continuity for electrical charge density p tells us that dp/0t = —9I1/0l = 0, where [ is
the spatial coordinate along the loop. Thus, the electric-multipole moments of the loop
have no time dependence, and the loop emits no electric-multipole radiation. The leading
magnetic-multipole moment of the loop is, of course, its magnetic-dipole moment,

CIA L2

—iwt 33
c dre © (33)

p(t)

(in Gaussian units). The time-averaged radiated power P,q associated with the oscillating
magnetic dipole (33) follows from the magnetic version of the Larmor formula,!

i WLt I3 2r? (L)4 12

Prad - )

— — 027 = O R, 34
3c¢3 48725 2 3¢ g ~rad (34)

where the radiation resistance is,

o (L\* L\
Rua = (2) —107(2) @ 35
Y ()\) ()\) (35)
recalling that 1/c = 30 €.

We now verify that the total power associated with the magnetic-dipole radiation-reaction
force (30) on all moving charges in the loop antenna equals the radiated power (34).

First, we recall that if the charge carriers (electrons) in the loop antenna have charge e,
average velocity v = er_”téﬁ (at time t) and number density n, then the current density J
obeys,

J = nev. (36)

If the current I in the loop antenna is confined to a region of area Ay in the cross section of
the conductor, then I = JAy. Thus, the average velocity is,
1 Iy

— — —iwt — —iwt‘ 37
v neAy nere voe (37)

For example, in copper, the number density n of conduction electrons is about 10?3 /cm3. A
current of Iy = 1 Amp corresponds to about 6 x 10'®¢/s. Then, for a cross sectional area of
Ap =1 mm? = 0.01 cm?, the magnitude of the velocity of the charges is,

Ly 6 x 10™%e/s

= nedy  (1023¢/cm?3)(0.01 cm?)

=6x107% cm/s. (38)

The peak radiation-reaction force (30) due to the magnetic-dipole radiation of a single
electron with velocity (37) is,
e2riwtuy  2m2e?Luy

Freact,Ml - 60 = 30)\4 . (39)

HSee, for example, sec. 71 of [18].



The time-average power delivered to a single electron by this force is Fieactmivo/2. The
total number of conduction electrons involved producing the radiation from the small loop
is N = nAyL. Because these electrons act coherently, the total time-average power provided
by the radiation-reaction force is N%v,/2 times the peak force (39) on a single electron. That
is,

A

P, react —

4
N2FreaCt7M1U0 - 7T2n262A1(12)L4Ug = 1_32—7T2 L = I_gRrad = Prad7 (40)
2 3cA 2 3c 2

as found in eq. (34).
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