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When Poynting deduced his eponymous vector [1], he argued that the rate at which
the electromagnetic field transfers energy to a system of electric charges and currents is
given by Jfree ·E, where Jfree is the “free” (conduction) electric current and E is the electric
field. Both of these fields would now be called macroscopic; Poynting (and Maxwell) did not
consider what is now called microscopic electrodynamics. Then, using the Maxwell equation
∇×H = Jfree + ∂D/∂t (in SI units) for linear media where B is the magnetic field, D = εE
and H = B/μ with constants ε and μ, Poynting deduced that

∫
dVolJfree · E =

∫
dVol

(
E · (∇ ×H) − E · ∂D

∂t

)

= −
∫

dVol

(
∇ · (E × H) + E · ∂D

∂t
+ H · ∂B

∂t

)

= −
∮

dArea · (E ×H) − ∂

∂t

∫
dVol

(
D · E

2
+

B · H
2

)
. (1)

From this, Poynting identified the vector flow S of field energy, and the volume density u of
field energy as

SPoynting = E × H, and uPoynting =
D · E

2
+

B · H
2

. (2)

However, the electromagnetic field also transfers energy to the “bound” electric currents,
so it is more correct to consider Jtotal ·E = (Jfree + Jbound) ·E and use the Maxwell equation
∇ × B = μ0 Jtotal + ε0μ0 ∂E/∂t, which leads to1

∫
dVolJtotal · E =

∫
dVol

(
E · (∇× B/µ0) − ε0E · ∂E

∂t

)

= −
∫

dVol

(
∇ · (E× B/μ0) + ε0E · ∂E

∂t
+

B

μ0

· ∂B

∂t

)

= −
∮

dArea · E× B

μ0

− ∂

∂t

∫
dVol

(
ε0E

2

2
+

B2

2μ0

)
, (3)

and the identifications

SEM = E × B

μ0

, and uEM =
ε0E

2

2
+

B2

2μ0

. (4)

While most textbooks on electromagnetism give Poynting’s argument (1)-(2) without com-
ment as to its misunderstanding about Jtotal, the forms of eq. (4) are advocated in [2], Sec. 54
of [3], Chap. 27 of [4], Sec. 11.9 of [5], Chap. 8 of [6], Sec. 9.6 of [7] and Chap. 5 of [8].

1It is likely that in 1883, Poynting considered that he should use Jtotal · E, but it seemed to him that
the total current of electric charges was just the conduction current Jfree.
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It is noteworthy that eq. (3) can be obtained from Poynting’s derivation (1) if we are
aware that D = ε0 E + P and H = B/μ0 − M, where P and M are the (macroscopic)
volume densities of electric and magnetic dipole moments, respectively, and that Jbound =
∂P/∂t + ∇ × M, where ∂P/∂t is the (electric) polarization current and ∇ × M is the
magnetization current.2 The polarization densities P and M are associated with mechanical
mass densities, and so could be called “electromechanical” quantities. Then, we can consider
D and H to be “electromechanical” fields, while E and B are the “pure” electromagnetic
fields.

We can now write∫
dVolJfree · E =

∫
dVol

(
E · (∇ × B/μ0) − E · (∇ ×M) − ε0 E · ∂E

∂t
− E · ∂P/∂t

)

= −
∫

dVol

(
∇ · (E × B/μ0) +

B

μ0

· ∂B

∂t
+ ε0E · ∂E

∂t

)
−

∫
dVol E · Jbound, (5)

which is equivalent to the second line of eq. (3), recalling that Jfree + Jbound = Jtotal.
Already in 1900, Poincaré [2] argued that the flux of energy in the electromagnetic field,

described by the Poynting vector SEM, is associated with a density of momentum S/c2 in the
electromagnetic field. This argument was seconded by Abraham in 1903 [19]. This relation
is more general, as discussed by Planck (1908, p. 829 of [20]), who argued that a flow q
(with dimensions of energy per unit area per unit time) of any type of energy is associated
with a momentum density p = q/c2, where c is the speed of light in vacuum.3 The factor
1/c2 suggests that this very small momentum density could be called “relativistic”, as well
as “hidden”.

We are thus led to associate a momentum density g with the energy-flux vector (2), which
we call4

gAbraham =
SPoynting

c2
=

E × H

c2
= ε0 E× B − E × M

c2
. (6)

2Neither Maxwell nor Poynting enunciated a concept of the polarization density P of electric dipoles,
and only regarded the relation between D and E as D = εrE, where εr is now called the (relative) dielectric
constant and/or the (relative) permittivity in Gaussian units, which are used in this footnote. See Art. 111
of [9] for Maxwell’s use of the term polarization.

In 1885, Heaviside introduced the concept of an electret as the electrical analog of a permanent magnet
[10], and proposed that the electrical analog of magnetization (density) be called electrization. He did not
propose a symbol for this, nor did he write an equation such as D = E + 4πP.

The density of electric dipoles was called the polarization by Lorentz (1892) in sec. 102, p. 465 of [12], and
assigned the symbol M.

Larmor (1895), p. 738 of [13], introduced the vector (f ′, g′, h′) for what is now written as the polarization
density P, and related it to the electric field E = (P, Q, R) as (f ′, g′, h′) = (K − 1)(P, Q, R)/4π, i.e.,
P = (εr − 1)E/4π = (D − E)/4π. Larmor’s notation was mentioned briefly on p. 91 of [14] (1898).

The symbol M for dielectric polarization was changed to P by Lorentz on p. 263 of [16] (1902), and a
relation equivalent to D = E+4πP was given in eq. (22), p. 265. See also p. 224, and eq. (147), p. 240 of [17]
(1903), which latter subsequently appeared as eq. (142), p. 155 of the textbook [18] (1904) by Abraham. The
quantity ∂P/∂t is called the “polarization current” on p. 193 of [18], as part of the “displacement current”
(1/4π)∂D/∂t (in Gaussian units).

3This relation has been discussed, for example, by Eckart on p. 923 of [22], endorsed by Feynman in
Sec. 27.6 of [4], and attributed to Planck by Møller in eq. (13) of [23].

4To distinguish the field-momentum-density vector from the electric-dipole-moment density P we use
the symbol g for the former, following [19].
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as first introduced by Abraham [19]. Since SPoynting is an “electromechanical” quantity,
gAbraham is also.

The “pure” electromagnetic-field-momentum density gEM can be obtained from the first
of eq. (4),

gEM =
SEM

c2
= ε0E × B, (7)

recalling that 1/c2 = ε0μ0.
5

The electromagnetic-field-momentum density gEM can also be deduced via an argument
that starts with the Lorentz-force density ftotal = ρtotalE + Jtotal × B on the total electric
charge and current densities, as discussed, for example, in Sec. 11.9 of [5], Chap. 8 of [6] and
Chap. 5 of [8], all of which endorse eqs. (3)-(4) and (7). See also Sec. 2.1 of [24].

We have noted that the field-momentum density is of order 1/c2, and so is a somewhat
“hidden” quantity. Likewise, in many systems with electric currents there is “hidden” me-
chanical momentum of order 1/c2 in the currents, a small relativistic correction. See, for
example, [25, 26]. In particular, in quasistatic systems with magnetization density M in an
electric field E there is “hidden” mechanical momentum

∫
dVolM×E/c2, and in quasistatic

systems with polarization density P in a magnetic field B there is “hidden” mechanical mo-
mentum which includes

∫
dVolP × B. We infer that the Abraham momentum (6) includes

the contribution from the “hidden” mechanical momentum of the magnetic dipoles but not
of the electric dipoles. Similarly, the field-momentum density according to Minkowski [27],
gMinkowski = D × B, includes (some of) the “hidden” mechanical momentum due to electric
dipoles but not due to magnetic dipoles. It seems that the “perpetual” Abraham-Minkowski
controversy (see, for example, [28]) is not about the “pure” electromagnetic-field momentum
of eq. (7), but about the circumstances in which various expressions for “electromechanical”
field momenta are relevant.

This short note was inspired by the lengthy eprint [29], that also reviewed how the
macroscopic and microscopic forms of Maxwell’s equations and the Lorentz force are the
same in terms of the electromagnetic fields E and B and the total densities of electric charge
and current, ρtotal and Jtotal.
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