\bigcirc

(2)

The Σ^0 -hyperon decays electromagnetically in the mode $\Sigma^0 \to \Lambda + \gamma$. Show how the relative parity of Σ^0 and Λ determines the multipolarity of the γ -ray emitted. From the polarization vector ε of the photon, and the propagation vector \mathbf{k} and spin $\mathbf{\sigma}$ of the Λ , deduce the simplest forms for the matrix element for even or odd relative parity. The experimental determination of the Σ - Λ parity has been based on the analysis of the Dalitz decay $\Sigma \to \Lambda e^+ e^-$. Which of the parity assignments has the steeper distribution in the invariant mass of the $e^+ e^-$ pair?

SKETCH THE FAVORED ORIGITATIONS OF THE PHOTON POLARIZATION E

SUPPOSING THE A SPIN & IS I TO THE MOMENTUM VECTOR K (IN

1 PEST FRAME , OF COURSE).

The intrinsic parity of the hyperon Ξ^- , of strangeness -2, can in principle be determined from observations on capture in hydrogen from an S-orbit:

$$\Xi^- + p \rightarrow \Lambda + \Lambda$$
.

The polarization of the Λ -hyperons can be determined from the asymmetry in the weak decay $\Lambda \to p + \pi^-$ (see Section 7.7). State what is the polarization (if any) of the Λ s produced in the above reaction and how the relative polarizations are determined by the Ξ -parity.

Find a relation between the total cross-sections (at a given energy) the reactions

$$\pi^{-}p \to K^{0}\Sigma^{0},$$

$$\pi^{-}p \to K^{+}\Sigma^{-},$$

$$\pi^{+}p \to K^{+}\Sigma^{+}.$$

Deduce through which isospin channels the following reactions may proceed: (a) $K^+ + p \rightarrow \Sigma^0 + \pi^0$, (b) $K^- + p \rightarrow \Sigma^+ + \pi^-$. Find the ratio of cross-sections for (a) and (b), assuming that one or other channel dominates.