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Reading: Griffiths secs. 9.1-9.3.

1. Griffiths’ prob. 9.6. In part a), solve for the complex reflected and transmitted ampli-

tudes ÃR and ÃT for strings with dispersion relations ki = ω
√

µi/T , i = 1, 2, where µi is

the mass per unit length and T is the tension (assumed to be constant, which ignores the
fact that the strings could not stretch unless they were elastic). Part b) then consists
of setting k2 = 0 in part a). Note that energy conservation requires waves on massive

strings to obey k1
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and energy flow is vgroup = dω/dk = ω/k =
√

T/µ times energy density). A “massless”

string cannot have any curvature (k = 0), and it carries no energy, so the above condi-

tion reduces to
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∣∣∣ in part b). Indeed, the “massless string” could be replaced
by a frictionless rod perpendicular to the massive string, on which the “knot” of mass
m slides. In this case, you would not even consider a transmitted wave in part b)...

This problem illustrates the dilemma of the Maxwellians: Experience from mechanics
implies that a medium must have mass to transmit energy via waves. Hence, the search
for the æther.

From 140 years distance it is easy to dismiss this prejudice as näıve, but perhaps the
current enthusiasm for “string” theory in higher dimensional space contains its own
elements of näıvety that will take a generation of effort to resolve.

2. Griffiths’ prob. 9.7.

3. Griffiths’ prob. 9.12.

4. Griffiths’ prob. 9.16.

5. Griffiths’ prob. 9.34. Griffiths seems to suggest working this via matching 5 waves at
2 boundaries – which is fine. But another approach works also. Namely, consider the
transmitted wave to be the result of interference of multiple reflections at the 1-2 and 2-
3 interfaces. The simplest transmitted wavelet has (relative) amplitude t12e

i∆t23, where
t12 is the amplitude transmission coefficient at the 1-2 boundary, and ∆ is the phase
shift of the wave while crossing medium 2. The 2nd piece consists of transmission at
1-2, reflection at 2-3, reflection at 2-1, and finally transmission at 2-3. The amplitude
for this is t12e

i∆r23e
i∆r21e

i∆t23. And so on. The series is easy to sum, yielding the
amplitude t13. Square to find T ....

The real point of this problem is to choose n2 and d so as to make T = 1. Good
lenses are coated with thin films to satisfy this desirable condition. The choice for d
is “obvious”. Verify that the choice n2

2 = n1n3 provides the desired “index matching”.
It suffices to verfify that |t13| = 1 in this case.

6. Griffiths’ prob. 9.37


