
Princeton University

Ph205

Mechanics

Problem Set 9

Kirk T. McDonald

(1988)

kirkmcd@princeton.edu

http://kirkmcd.princeton.edu/examples/



Princeton University 1988 Ph205 Set 9, Problem 1 1

1. Physics in the Laundromat.

If a washing machine (with a vertical shaft) is unevenly loaded, violent motions can
occur at the start of a spin cycle. Nonetheless, as the spin angular velocity increases a
stable motion (usually) results.

The mechanism of the washing machine is roughly as follows. The center of the wash
tube/drum, of mass M and radius a, is tied to a fixed point in the lab by spring
of constant k and zero rest length. The line from the fixed point to the center of
the drum has length r, and makes angle θ to a fixed direction in the lab. There is
velocity-dependent damping −γ ṙ on the distance r.

A motor forces the drum to rotate about its center with constant angular velocity
φ̇ = Ω.

The uneven load can be taken as a point mass m on the surface of the drum.

(a) Deduce the equations of motion for coordinates r and θ.

(b) Consider steady motion, to show that for large spin Ω, the center of mass of
unevenly loaded drum approaches the fixed point in the lab frame (the origin
of coordinates (r, theta). That is, the motion of the washing machine is self-
centering.

(c) Consider small perturbations about the steady motion, to show that they are
stable. It suffices to consider underdamped motion.

This stability can be attributed to the effect of the Coriolis force.
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2. Wobble-Plate Engine (also called a swash-plate engine).

A disk of mass M and radius R is mounted on a shaft through its center, making angle
α as shown in the figure below. The disk rotates with constant angular velocity ω
about the shaft.

(a) Identify the principal axes, and the principal moments of inertia, to obtain the
angular momentum L of the disc in the principal-axis frame.

Show that L makes angle β to the shaft where,

tan β =
tanα

2 + tan2 α
. (1)

(b) Four pistons have rods that are parallel to the main shaft, and press against the
rotating, tilted disk. Hence, the pistons are driven back and forth by the rotating
disk (or vice versa) to make an engine.

The 4 pistons are mounted 90◦ apart in azimuth, two in the plane of the page as
shown, and two perpendicular to the page.

The pistons each have mass m, with their axes at distance r from the main shaft.
The piston cylinders are a rest with respect to the shaft.

Show that the pistons execute simple harmonic motion.

Calculate the angular momentum of the four pistons about the center of the
tilted disk. Show that the total angular momentum of the disk plus pistons will
be “balanced”, i.e., parallel to the main shaft, if,

m =
MR2 cos2 α

8r2
. (2)

A video of a swash-plate pump: https://www.youtube.com/watch?v=MdesnTOpkCM

A variant in which the plate is fixed and the piston cylinder block rotates:
https://www.youtube.com/watch?v=_VSOgJn-3wo
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3. (a) A coin initially in a horizontal plane is tossed vertically into the air with angular
velocity components ω1 about a diameter and ω3 about its symmetry axis. If ω3

were zero, the coin would simply spin about a (horizontal) diameter. For nonzero
ω3, the coin will precess (about what axis?) What is the minimum value of ω3/ω1

for which the wobble is such that the same face of the coin is always visible to an
observer looking from above (and the coin lands without “flipping”?

(b) A space station in the form of a ring is rotating about its symmetry axis with
initial angular velocity ω0. It is struck at a point on its rim by a meteor that
imparts impulse P parallel to ω0. What is the angle between ω0 and the new
instantaneous axis of rotation after the collision?

What is the motion of the space station after the collision, ignoring gravity?

(c) A body with a symmetry axis, 3̂, is rotating subject to an external drag torque
due to air resistance,

τ = −Cω, (3)

where ω is the total angular velocity vector. Use Euler’s equations to show that
ω3 decreases exponentially with time. Combine the equations for ω1 and ω2 to
show that the angle between ω and 3̂ varies as,

tan θ =

√
ω2

1 + ω2
2

ω3
= tan θ0 e−C(I3−I1)t/I1I3, (4)

and so, θ → 0 or 90◦ as t → ∞.
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4. ωhoops!

A uniform sphere of mass m and radius a is spinning about a diameter with angular
velocity ω0. Ignore gravity, and work in a frame in which the center of the sphere is
initially at rest.

Suddenly, a point A on the surface of the sphere, at angle θ to the axis of rotation, is
fixed.

(a) What is the instantaneous axis of rotation of the sphere just after the moment
when point A becomes fixed?

It is useful to express your answer with respect to axes that emphasize point A.

(b) What is the speed of point B at the same azimuth as P and at polar angle θ+90◦,
just after A becomes fixed?

Answer: vB = aω0

√
sin2 θ

9
+ cos2 θ.

(c) What is the (vector) impulse P required to fix point A?

(d) What are the (vector) force F and torque τ about point A that would be required
to maintain steady motion after point A becomes fixed?

Answer: τ = 1
3
ma2ω2

0 sin θ cos θ.
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5. Steady Motion of a Rolling Wheel.

A wheel in the form of a hoop of mass m and radius a rolls without slipping on a
horizontal surface. The plane of the hoop makes angle θ to the vertical. Its center
moves in a (horizontal) circle of radius b, with angular velocity Ω. The wheel rotates
about its axle with angular velocity ω.

Consider steady motion, for which ω, Ω and θ are constants.

(a) What is the relation (rolling constraint) between ω and Ω for rolling without
slipping?

You must get this right before proceeding.

(b) What is the (vector) torque τ about the center of the hoop?

In the rest of the problem, use parts (a) and (b) to find a relation between Ω, a
and b.

(c) Use Euler’s equations.

That is, use a set of body/principal axes, rotating with the wheel. Identify the
principal moments of inertia.

Note that in the lab frame, the total angular velocity is ωtot = ω + Ω. Calculate
ωtot in both the lab frame and the principal-axis frame.

To plug into Euler’s equations, it is convenient to consider a time when one of the
principal axes is horizontal, and the other two are in the vertical plane. Then,
only one of Euler’s equations is nontrivial, leading to,

Ω2 =
2g tan θ

4b + a sin θ
. (5)

(d) Instead of using Euler’s equations, consider a set of principal axes that don’t roll
with the hoop, but rather rotate about the vertical Ω. Again, choose one principal
axis horizontal for simplicity.

Compare the time derivative of the angular momentum L = I ·ωtot in the rotating
frame defined above to that in the lab frame, which should lead to the result of
part (c).
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6. Spinning Coin.

A special case of the rolling wheel is when the center of mass does not move (b = 0 in
Prob. 5).

An example is a coin spinning steadily on a table (ignoring friction, which eventually
brings the coin to rest on the table). Try it!

Notice that the coin wobbles rapidly, but the figure on the coin precesses slowly.

(a) Show that Ω2(θ) = 4g/a cos θ, where Ω is the angular velocity about the vertical
axis through the center of the coin, by an analysis in the lab frame for a thin disc
of mass m and radius a whose plane makes angle θ to the vertical.

What is the angular momentum L(θ, Ω).

(b) As the coin rolls without slipping, the point of contact moves. By what angle
does the orientation of the coin’s face change during one revolution of the point
of contact (in a circle on the table)?

Show that the orientation of the figure precesses (slowly) at angular velocity
ωfigure = Ω(1 − sin θ), such that ωfigure → 0 as θ → 90◦ (and Ω → ∞).

Can the speed of the point of contact of the coin exceed Mach 1?
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Solutions

1. Physics in the Laundromat.

We consider the following model of a washing machine.

The center of the washtub/drum is tied to a fixed point in the lab by spring of constant
k and zero rest length. The line from the fixed point to the center of the drum has
length r, and makes angle θ to a fixed direction in the lab. There is a velocity-dependent
damping −γ ṙ on the distance r.

A motor forces the drum to rotate about its center with constant angular velocity
φ̇ = Ω.

Because of the uneven load, the center of mass of the drum (of mass M) plus load (of
mass m) is not at the center of the tub, but distance a away.

(a) The equations of motion of this system of two degrees of freedom, r and θ, are
readily deduced from a Newtonian approach,

mcmr̈cm = M r̈ + m r̈m = −k r − γ ṙ, (6)

where the position rm of mass m is,

rm = r + a = r r̂ + a cos(φ − θ) r̂ + a sin(φ − θ) θ̂, (7)

ṙm = ṙ + ȧ = ṙ r̂ + rθ̇ θ̂ + aΩ φ̂

= ṙ r̂ + rθ̇ θ̂ + aΩ[− sin(φ− θ) r̂ + cos(φ − θ θ̂] (8)

r̈m = r̈ + ä = (r̈ − rθ̇
2
) r̂ + (rθ̈ + 2ṙθ̇) θ̂

−aΩ(Ω − θ̇)[cos(φ − θ) r̂ + sin(φ − θ) θ̂] − aΩθ̇[sin(φ − θ) θ̂ + cos(φ − θ) r̂]

= [r̈ − rθ̇
2 − aΩ2 cos(φ − θ)] r̂ + [rθ̈ + 2ṙθ̇ − aΩ2 sin(φ − θ)] θ̂, (9)

where θ̂ is perpendicular to r̂, ˙̂r = θ̇ θ̂ and
˙̂
θ = −θ̇ r̂.

Then, the equation of motion associated with coordinate r is the r̂ component of
eq. (6),

r̈ = r θ̇
2
+ b Ω2 cos(φ − θ) − ω2

0 r − Γ ṙ, (10)
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and that with coordinate θ is the θ̂ component of eq. (6),

0 = r θ̈ + 2ṙ θ̇ − b Ω2 sin(φ − θ) + Γ r θ̇, (11)

where we have introduced the notation,

ω0 =

√
k

m + M
. (12)

for the natural frequency of vibration of the washing machine,

b =
m

m + M
a, (13)

for the distance of the center of mass from the shaft and,

Γ =
γ

m + M
. (14)

These equations can be interpreted in a frame rotating with angular velocity θ̇.
Equation (10) tells us that the total mass times the radial acceleration of mass
M equals the spring force plus the radial component of the centrifugal force and
friction. Equation (11) indicates that the azimuthal coordinate forces plus friction
sum to zero; the term 2ṙθ̇ is the Coriolis acceleration.

The equations of motion with the neglect of friction are also readily deduced from
the Lagrangian,

L =
1

2
(m+M)(ṙ2+r2 θ̇

2
)−maṙ Ωsin(φ−θ)+mar θ̇Ωcos(φ−θ)+

1

2
(I+ma2)Ω2−1

2
kr2,

(15)
where I is the moment of inertia of the drum plus symmetric part of the load.
The rotational kinetic energy is constant by assumption, so the moment of inertia
does not appear further in the analysis.

(b) We first discuss steady motion in which ṙ = 0, r̈ = 0 and θ̈ = 0. The shaft of
the drum moves in a circle of radius r0 and the mass m is at constant azimuth
φ0 = φ − θ relative to the azimuth of the shaft. Then, eq. (10) tells us that,

r0 =
b Ω2 cos φ0

ω2
0 − Ω2

, (16)

while eq. (11) indicates,

r0 =
b Ωsinφ0

Γ
. (17)

Together,

cosφ0 =
ω2

0 −Ω2√
(ω2

0 − Ω2)2 + Γ2Ω2
, sinφ0 =

ΓΩ√
(ω2

0 − Ω2)2 + Γ2Ω2
, (18)
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and,

r0 =
b Ω2√

(ω2
0 − Ω2)2 + Γ2Ω2

. (19)

For a balanced load (m = 0) distance b is zero, so the equilibrium displacement
is zero also.

For low spin (Ω � ω0) an unbalanced load finds itself at relative azimuth φ0 ≈ 0,
while near resonance (Ω ≈ ω0) the azimuth is ≈ π/2, and for high spin (Ω � ω)
the azimuth approaches π. In the latter case the system is a kind of inverted
pendulum.

The center of mass of the system is at distance,

rcm =
b ω2

0√
(ω2

0 −Ω2)2 + Γ2Ω2
. (20)

Thus the center of mass approaches the origin as the spin Ω becomes large, even
though the shaft is at radius r0 ≈ b. The system can be called self-centering as
the spin Ω increases, once it successfully passes through the resonance region.

(c) Is the desirable self-centering motion found above stable against small perturba-
tions?

If angle θ(t) were locked at φ − φ0 = Ω t − φ0, i.e., if only radial oscillations of
the axis of the drum were permitted, and Ω > ω0 answer would be no!

To see this we refer to eq. (10), which for the locked hypothesis reads,

r̈ = (Ω2 − ω2
0)r + b Ω2 cos φ0 − Γ ṙ. (21)

For oscillatory radial motion the coefficient of the term in r must be negative.
Hence, the locked motion would be stable only for low spin, Ω < ω0.

However, we will find that the motion is stable when both radial and azimuthal
oscillations are considered. The linked system of masses m and M forms a kind
of double pendulum. The motion in which φ ≈ θ + π that arises when the drive
frequency Ω exceeds the resonant frequency ω0 is an example of a stable inverted
pendulum.

To demonstrate this we perform a perturbation analysis, seeking solutions of the
form,

r = r0(1 + ε), θ = φ − φ0 + δ, (22)

where the perturbations are desired to be small and oscillatory with angular fre-
quency ω,

ε = ε0 eiωt, and δ = δ0 eiωt with ε0, δ0 � 1. (23)

The constants ε0, δ0 and ω are complex in general, and, of course, the physical
motion is described by the real parts of eq. (22). Both the real and imaginary
parts of ω should be positive; the real part is the frequency of oscillation and the
imaginary part is the damping decay constant.
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In the first approximation we now have,

cos(φ − θ) = cos φ0 + δ sinφ0, and sin(φ − θ) = sinφ0 − δ cos φ0. (24)

Then, using (21)-(24) in (10) and keeping terms only of first order of smallness,
we find,

− ω2ε0 = Ω2 + 2iΩδ0 +
b Ω2 sinφ0

r0
δ0 − ω2

0ε0 − iωΓε0. (25)

With eq. (17) this tells us that,

ε0 = − Γω + 2iωΩ

ω2 − ω2
0 + Ω2 − iωΓ

δ0. (26)

Similarly, eq. (11) leads to,

0 = −ω2δ0 + 2iΩωε0 +
b Ω2 cos φ0

r0

δ0 + ΓΩ0ε0 + iωΓδ0, (27)

which together with eq. (16) tells us that,

δ0 =
ΓΩ + 2iΩω

ω2 − ω2
0 + Ω2 − iωΓ

ε0. (28)

Equations (26) and (28) are consistent only if,

ΓΩ + 2iΩω

ω2 − ω2
0 + Ω2 − iωΓ

= ±i, (29)

which leads to the quadratic equation,

ω2 − 2ω(±Ω − iΓ/2) − ω2
0 + Ω2 ± iΓΩ = 0. (30)

The roots of this with positive real parts are,

ω =

⎧⎪⎨
⎪⎩
√

ω2
0 − (Γ/2)2 ±Ω + iΓ/2, Ω <

√
ω2

0 − (Γ/2)2,

Ω ±
√

ω2
0 − (Γ/2)2 + iΓ/2, Ω >

√
ω2

0 − (Γ/2)2.
(31)

In the above we have assumed that the damping is weak enough that ω0 > Γ/2.
Then, perturbations die out with characteristic time 2/Γ which is greater than
the natural period of oscillation, 1/ω0.

Thus stable motion exists for all values of the spin Ω. Referring to eq. (27), we
note that the key coupling between the radial and azimuthal perturbations (ε and
δ) is provided by the Coriolis force.

As the spin frequency Ω approaches the resonant frequency ω0 the lower frequency
of the perturbed motion goes to zero. If the amplitude of the perturbation is large
it will be noticeable throughout the laundromat.
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For high spin, eqs. (28) and (31) yield the relation,

δ0 =
iε0

1 − iΓ
2Ω

− Γ2

8Ω

(
Ω±

√
ω2

0−(Γ/2)2
) ≈ iε0, (32)

which indicates that the radial and azimuthal perturbations are 90◦ out of phase.
The angular velocity of the motion of the center of the drum is,

θ̇ = Ω + ε0 sin
(
Ω ±

√
ω2

0 − (Γ/2)2

)
, (33)

which is Ω on average. This implies that the perturbed motion of the shaft of
the drum is still a circle of radius r0 to first approximation. However, since the
frequency ω of the perturbation differs from the average rotation frequency Ω, the
orbit of the center of the drum is not closed but precesses at angular frequency
ω0, as sketched below.

The steady motion of the axis of the drum is at angular velocity Ω in a circle of
radius r0 about the origin. The perturbed orbit is nearly circular, but precesses
with angular velocity ω0 and lies in the annulus r0(1 − ε0) < r < r0(1 + ε0).

In the limit that Ω � ω0 the motion of the center of the drum is essentially a
circle of radius r0 displaced by distance ε0r0 from the origin, as shown below. In
practice this displacement can be quite noticeable, as the reader can confirm on
his or her next trip to the laundromat.

If the drive frequency Ω is large compared to the resonant frequency ω0 the per-
turbed motion is a circle of radius r0 whose center is displaced by εr0.

The motion of the axis of the drum of the washer is an example of the motion of
unbalanced shafts of large rotating machines, as has been well described by Landau
and Kitaigorodsky in a popular book, pp. 176-180 of
http://kirkmcd.princeton.edu/examples/mechanics/landau_motion_74.pdf
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2. Wobble-Plate Engine.

This example is from Probs. 324-325, p. 437 of J.P. den Hartog, Mechanics (McGraw-
Hill, 1948), http://kirkmcd.princeton.edu/examples/mechanics/denhartog_48.pdf

A disk of mass M and radius R is mounted on a shaft through its center, making angle
α as shown in the figure below. The disk rotates with constant angular velocity ω
about the shaft.

(a) The principal axes of a uniform disk are its axis, 3̂1, and any two orthogonal axes
in the plane of the disk. We take axis î1 to lie in the plane of the shaft and the
axis of the disk, and î2 = î3× î1 perpendicular to this plane (i.e., out of the page).

The moment of inertia of the disk about its axis î3 is,

Ipa,3 =
MR2

2
. (34)

Then, by the perpendicular-axis theorem, the (equal) moments of inertia about
principal axes 1 and 2 are,

Ipa,1 = Ipa,2 =
MR2

4
. (35)

The angular velocity of the disk in the frame of the principal axes is,

ωpa = ω(sin α, 0, cos α, ). (36)

The inertia tensor Ipa of the disk is diagonal, so its angular momentum Ldisk,pa

has the form,

Ldisk,pa = Ipa · ωpa = (Ipa,1 ωpa,1, Ipa,2 ωpa,2, Ipa,3 ωpa,3) =
MR2ω

4
(sinα, 0, 2 cos α).(37)

Hence, the angle β of Ldisk,pa to the shaft is related by,

tan(α − β) =
sinα

2 cos α
=

tan α

2
, (38)

tan β = tan([α − (α − β)] =
tanα − tan(α − β)

1 + tan α tan(α − β)
=

tan α

2(1 + 1
2
tan2 α)

=
tan α

2 + tan2 α
.(39)

The principal-axis frame rotates with respect the lab frame, so the angular mo-
mentum is not constant in the lab frame, and the wobble plate would be described
as “unbalanced” in the lab frame.

In the lab frame, we consider a (fixed) coordinate system (x, y, z) with ẑ along
the shaft, x̂ in the plane of the shaft and the axis of the disk, and ŷ = ẑ × x̂
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perpendicular to this plane (i.e., out of the page). Then, the z-component of
Ldisk,pa is “balanced”, as it requires no forces/torques on the shaft to maintain it.
In contrast, the component Ldisk,pa,⊥ perpendicular to the shaft, with magnitude
Ldisk,pa sinβ, is “unbalanced” in the sense of requiring forces/torques on the shaft
to be maintained. This “unbalanced” component of the angular momentum of
the disk rotates with angular velocity ω about the shaft, in the (fixed) (x, y, z)
frame.

(b) Four pistons of mass m each have rods that are parallel to the main shaft, at
distance r. The piston rods press against the rotating tilted disk at,

rrod,n = (r sinnπ/2,−r cos nπ/2, r tan α sin(nπ/2 − ωt)), (40)

in a fixed rectangular coordinate system with z along the shaft and z in the page,
for n = 1-4. Hence, the pistons are driven back and forth by the rotating disk (or
vice versa) in simple harmonic motion, to make an engine.

The piston rods have length l, so the centers of the pistons are at,

rn = (r sinnπ/2,−r cos nπ/2, r tan α sin(nπ/2 − ωt) − l). (41)

The pistons have velocity (in the z-direction),

vn,z = −ωr tan α cos(nπ/2 − ωt), (42)

and their total angular momentum about the origin (in the fixed (x, y, z) coordi-
nate system) is,

Lp =
∑
n

rn × mvn

= mr2ω tan α
∑
n

(cos(nπ/2) cos(nπ/2 − ωt), sin(nπ/2) cos(nπ/2 − ωt), 0)

mr2ω tan α

2

∑
n

(cosωt + cos(nπ − ωt), sinωt − sin(nπ − ωt), 0)

= 2mr2ω tan α (cosωt, sinωt, 0). (43)

Thus, the total angular momentum of the piston rotates about the z axis with
angular velocity ω, and points in the x-direction at t = 0.

If the angular momentum (43) of the pistons cancels the component Ldisk,pa,⊥
of the angular momentum of the disk, found in part (a), then the total angular
momentum of the system would be “balanced” (i.e., about the z-axis of the shaft).
For this, we need,



Princeton University 1988 Ph205 Set 9, Solution 2 14

Lp,⊥ = 2mr2ω tan α = Ldisk,pa,⊥ sinβ =
MR2ω

4

√
sin2 α + 4cos2 α sin β

=
MR2ω

4
cos α

√
tan2 α + 4

tan α√
tan2 α + (2 + tan2 α)2

=
MR2ω

4
sinα

√
tan2 α + 4√

4 + 5 tan2 α + tan4 α
=

MR2ω

4
sinα

√
tan2 α + 4√

(4 + tan2 α)(1 + tan2 α)

=
MR2ω

4
sinα cos α, (44)

m =
MR2 cos2 α

8r2
. (45)

Although the wobble-plate engine is technically clever, it was not a commercial
success. See, for example,
http://kirkmcd.princeton.edu/examples/EM/anning_per_248_11.pdf
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3. (a) This is Prob. 13, p. 259 of V. Barger and M. Olsson, Classical Mechanics A
Modern Perspective (McGraw-Hill), 1973),
http://kirkmcd.princeton.edu/examples/EM/barger_73.pdf

A coin initially in a horizontal plane is tossed vertically into the air with angular
velocity components ω1 about a diameter and ω3 about its symmetry axis. If
ω3 were zero, the coin would simply spin about a (horizontal) diameter. If ω3 is
nonzero, the coin will precess about the conserved angular momentum L = I · ω.

We adopt a principal-axis coordinate system, with î3 along the symmetry axis of
the coin, and î1 and î2 in the plane of the coin, which is initially horizontal, as
shown on the left below.

The inertia tensor I is diagonal in this system, with I11 = I22 = ma2/4 and
I33 = ma2/2, where m is the mass of the coin, and a is its radius. The (conserved)
angular momentum L of the coin is, in the initial principal-axis coordinate system,

L = (I11ω1, I22ω2, I33ω3) =
ma2

4
(ω1, 0, 2ω3), tan θ =

ω1

2ω3
. (46)

After the coin has precessed by 180◦ about L, it is in the configuration shown on
the right above. For the initial bottom face of the coin to be visible from above
at this time (such that the coin can “flip”), we must have θ > 45◦, where θ is the
angle between L and î3.

For the same face of the coin to be always visible to an observer looking from
above (such that the coin lands without “flipping”), we must have θ < 45◦, i.e.,

ω1

2ω3
< 1,

ω3

ω1
>

1

2
. (47)

(b) This is Prob. 9.14, p. 414 of G.R. Fowles and G.L. Cassiday, Analytical Mechanics,
7th ed. (Thomson Brooks/Cole, 2004).

The instantaneous axis of rotation of the space station is along the total angular
velocity vector ω.

Just after the collision with a meteor, the space station still has angular velocity
component ω0 3̂ in the principal-axis system shown in the figure below.
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The impulse P of the meteor, which struck the station of mass m at radius a 2̂
gives it angular momentum component,

L1 = aP = I11ωP =
ma2

2
ωP , ωP =

2aP

m
, (48)

recalling that for a ring, I11 = I22 = ma2/2, I33 = ma2.

The angle θ of the total angular velocity ω = (ωP , 0, ω0) to the axis of the space
station (after the collision) is related by,

tan θ =
ωP

ω0
=

2aP

ω0 m
. (49)

After the collision, the space station takes on center-of mass velocity P/m, and
precesses about the conserved angular momentum,

L = (I11ωP , 0, I33ω0) = (aP, 0, ma2ω0). (50)

Euler’s equations for free precession tell us that in the principal-axis frame,

ω̇ =
I33 − I11

I11
ω0 3̂ × ω = ω0 3̂ × ω ≡ Ω ×ω, (51)

so the angular velocity of precession is,

Ω = ω0. (52)

In the nonrotating frame of the space station before the collision, the principal axes
(and ω) precess about L with angular velocity Ω = ω0 (such that the precession
angular velocity vector is Ω = ω0 L̂ in this frame).

(c) From sec. 39, p. 71 of R.F. Deimel, Mechanics of the Gyroscope (Macmillan,
1929), http://kirkmcd.princeton.edu/examples/mechanics/deimel_gyro_52.pdf

A body with a symmetry axis, 3̂, is rotating subject to an external drag torque
due to air resistance,

τ = −Cω, (53)

where ω is the total angular velocity vector.

By the symmetry, I11 = I1 = I2, so the third Euler equation simplifies to,

− Cω3 = I3ω̇3 + ω1ω2(I2 − I1) = I3ω̇3, ω3 = ω3,0 e−Ct/I3. (54)

The other two Euler equations are, again noting the symmetry,

− Cω1 = I1ω̇1 + ω2ω3(I3 − I1), −Cω2 = I1ω̇2 + ω3ω1(I1 − I3). (55)

Multiplying these by ω1 and ω2 and adding, we find,

− C(ω2
1 + ω2

2) = I1(ω1ω̇1 + ω2ω̇2) =
I1
2

d

dt
(ω2

1 + ω2
2), (56)

ω2
1 + ω2

2 = (ω2
1 + ω2

2)0 e−2Ct/I1. (57)
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Hence, the angle between ω and 3̂ varies as,

tan θ =

√
ω2

1 + ω2
2

ω3
=

√
ω2

1 + ω2
20

e−Ct/I1

ω3,0 e−Ct/I3
= tan θ0 e−C(1/I1−1/I3)t

= tan θ0 e−C(I3−I1)t/I1I3, (58)

For an oblate spheroid (such as a Frisbee), I3 > I1, so θ → 0 as t → ∞, while for
a prolate spheroid (such as a pencil), I3 < I1, so θ → 90◦ as t → ∞.

See also, http://kirkmcd.princeton.edu/examples/mechanics/wainwright_pm_3_641_27.pdf
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4. ωhoops!

Aspects of this problem appear in Art. 290, p. 240 of E.J. Routh, The Elementary Part
of a Treatise on the Dynamics of a System of Rigid Bodies, 7th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

and in Ex. 3, p. 169 of E.T. Whittaker, A Treatise on Analytical Dynamics of Particles
and Rigid Bodies (Cambridge U. Press, 1904, 1917, 1927, 1937),
http://kirkmcd.princeton.edu/examples/mechanics/whittaker_dynamics_17.pdf

A hoop of mass m and radius a is spinning about a diameter with angular velocity
ω0. If a point A, at angle θ to the axis of rotation, on the hoop is suddenly fixed, the
angular momentum about this point is unchanged

In a frame where the center of the hoop is initially at rest, the angular momentum
about point A is only that due to the motion relative to the center (of mass of) the
hoop, namely,

L = Id ω0 =
ma2

2
ω0. (59)

recalling that the moment of inertia Id of a hoop about a diameter is 1/2 of that (ma2)
about its symmetry axis.

(a) After point A becomes fixed, we consider principal axes centered on point A, as
shown in the figure above.

Just after point A becomes fixed, the motion does not include rotation about axis
3̂, perpendicular to the plane of the hoop, so it is convenient to consider principal
axes centered on point A, as shown in the figure above. Then ω3 = 0 just after
the sudden fixture, and the angular momentum L, eq. (59), about A, and the
angular velocity ω, have components (in the principal-axis system),

L1 = L sin θ = I1 ω1 = (Id + ma2)ω1, ω1 =
Id

Id + ma2
ω0 sin θ (60)

L2 = −L cos θ = I2 ω2 = Id ω2, ω2 = −ω0 cos θ, (61)

L3 = 0 = I3 ω3, ω3 = 0. (62)

For a hoop, I2 = ma2/2, so the instantaneous axis, along ω, just after the sudden
fixture is,

ω = ω0

(
sin θ

3
,− cos θ, 0

)
. (63)
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For a uniform disk, Id = ma2/4, and for a uniform sphere Id = 2ma2/5, so the
instantaneous axes just after the sudden fixture those spinning bodies would be,

ωdisk = ω0

(
sin θ

5
,− cos θ, 0

)
, ωdisk = ω0

(
2 sin θ

7
,− cos θ, 0

)
. (64)

(b) Point B has coordinates rB = (−a, a, 0) in the principal-axis system, so its velocity
just after the sudden fixture is,

vB = ω × rB = aω0

(
0, 0,

sin θ

3
− cos θ

)
. (65)

(c) Just after the sudden fixture the center (of mass of) the hoop, at rcm = (0, a, 0)
in the principal-axis system, has velocity,

vcm = ω × rcm = aω0

(
0, 0,

sin θ

3

)
, (66)

which is out of the page (and −1/3 of the velocity of point A just before the
sudden fixture).

The impulse P at point A provides the center-of-mass momentum just after the
sudden fixture, so,

P = mvcm = maω0

(
0, 0,

sin θ

3

)
, (67)

in the principal-axis system.

(d) If the hoop were to rotate steadily about point A with constant angular velocity
(63), the angular momentum L would have to precess around ω, requiring a
torque,

τ =
dL

dt
= ω × L, (68)

about point A. Just after the sudden fixture, when L = L(sin θ,− cos θ, 0) =
Idω0(sin θ,− cos θ, 0) in the principal-axis system, the required torque is,

τ =
2

3
Idω

2
0 sin θ cos θ 3̂ =

ma2 ω2
0 sin θ cos θ

3
3̂. (69)

As the hoop rotates about the constant vector ω, the torque vector must ro-
tate/precess about ω also.
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For steady rotation about the fixed point A, the center of rotation of the hoop
lies along vector ω through A, at distance a sin α from it, where α is the angle
between ω and the 1-axis. We also define φ as the angle between ω and the z-axis
(which is parallel to ω0). Then,

α + θ + φ =
π

2
, cos α =

ω1

ω
=

sin θ

3
√

1
9
sin2 θ + cos2 θ

. (70)

The center of the hoop moves in a circle of radius r = a cosα with angular velocity
ω, which requires a force F on point A of magnitude,

F = mω2r = ma ω2
0 cos α

(
sin2 θ

9
+ cos2 θ

)
=

ma ω2
0 sin2 θ

9

√
1 + 9 cot2 θ. (71)

Vector F makes angle φ to the y-axis (perpendicular to ω0) just after the sudden
fixture, and as the hoop rotates, vector F also precesses about ω.

For the trivial case of θ = 0, point A is already fixed in the initial state, so P, τ
and F are all zero, as consistent with eqs. (67), (69) and (71).

For θ = 90◦, P = maω0(0, 0, 1/3), τ = 0, and F = maω2
0/9 , with α = φ = 0.
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5. Steady Motion of a Rolling Wheel.

This problem is discussed, for example, in sec. 29, p. 54 of R.F. Deimel, Mechanics of the
Gyroscope (Macmillan, 1929), http://kirkmcd.princeton.edu/examples/mechanics/deimel_gyro_52.pdf

and in prob. 3.7, p. 38 of D.F. Lawden, Analytical Mechanics (Allen & Unwin, 1972),
http://kirkmcd.princeton.edu/examples/mechanics/lawden_72.pdf

A wheel in the form of a hoop of mass m and radius a rolls without slipping on a
horizontal surface. The plane of the hoop makes angle θ to the vertical. Its center
moves in a (horizontal) circle of radius b, with angular velocity Ω. The wheel rotates
about its axle with angular velocity ω.

We consider steady motion, for which ω, Ω and θ are constants.

(a) As the hoop rolls around the vertical axis Ω, the velocity of the point of contact
of the hoop with the horizontal plane is,

v = Ωr = Ω(b + a sin θ). (72)

Also, this velocity is related to the angular velocity ω by v = ωa, such that,

ω = Ω

(
b

a
+ sin θ

)
. (73)

(b) In the lab frame, we first consider a fixed, rectangular coordinate system, (x, y, z),
with at the center of the circle on the horizontal plane in which the wheel rolls. For
steady motion of the wheel, the forces on it are a centripetal force F = −mΩ2by,
and a normal force N = mg ẑ.

We also consider body axes (1, 2, 3) with 1̂ and 2̂ in the plane of the wheel, and
3̂ along its axis (and hence along ω).

The torque about the center (of mass of) the wheel at a moment when 2̂ is in the
y-z plane (with 1̂ out of the page), and y = − sin θ 2̂−cos θ 3̂, ẑ = cos θ 3̂−sin θ 3̂,
as shown in the figure above, is,

τ = −a 2̂ × (F + N) = −a 2̂ × (−mΩ2b ŷ + mg ẑ)

= −a 2̂ × [(mΩ2b sin θ + mg cos θ) 2̂ + (mΩ2b cos θ −mg sin θ) 3̂]

= ma(g sin θ − Ω2b cos θ) 1̂. (74)

(c) To use Euler’s equations, we consider the body frame (1, 2, 3), in which ω = ω 3̂
is constant, but Ω is rotating. Here, the principal moments of inertia are I1 =
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I2 = I3/2 = kma2/2, where k = 1 for a hoop and k = 1/2 for a uniform disk, so
Euler’s equations are, at the moment shown in the figure,

τ 1 = ma(g sin θ −Ω2b cos θ) = I1 ω̇tot,1 + (I3 − I2)ωtot,2ωtot,3

= (kma2/2)(ω̇tot,1 + Ωcos θ(ω − Ωsin θ), (75)

τ 2 = 0 = I2 ω̇tot,2 + (I1 − I3)ωtot,1ωtot,3 = (kma2/2)(ω̇tot,2 − ωtot,1ωtot,3), (76)

τ3 = 0 = I3 ω̇tot,3 + (I1 − I2)ωtot,2ωtot,3 = kma2ω̇tot,3. (77)

To complete the solution using the only nontrivial Euler equation, (75), we need
ω̇tot,1 at the moment shown in the figure above. For this, we note that in the
(x, y, z) lab frame, the total angular velocity precesses around Ω,

dωtot

dt

∣∣∣∣∣
(x,y,z)

= Ω× ωtot = Ω × ω = Ω(cos θ 2̂ − sin θ 3̂) × ω 3̂ = ωΩcos θ 1̂. (78)

Also, the relation between the rates of change in the (x, y, z) lab frame and the
(1, 2, 3) body frame that rotates with angular velocity ωtot is,

dωtot

dt

∣∣∣∣∣
(x,y,z)

=
dωtot

dt

∣∣∣∣∣
(1,2,3)

+ ωtot ×ωtot =
dωtot

dt

∣∣∣∣∣
(1,2,3)

= ωΩcos θ 1̂. (79)

Using this in eq. (75), we find, recalling eq. (73),

2(g sin θ −Ω2b cos θ) = ka[ωΩcos θ + Ωcos θ(ω − Ωsin θ)]

= kΩ2 cos θ(b + a sin θ) + kΩ2 cos θ(b + a sin θ) − kaΩ2 cos θ sin θ)

= 2kΩ2b cos θ + kΩ2a cos θ sin θ), (80)

Ω2 =
2g tan θ

2(1 + k)b + ka sin θ
. (81)

For a wheel/hoop with k = 1, recalling that r = b + a sin θ is the radius of the
circle of contact of the wheel with the ground,

Ω2 =
2g tan θ

4b + a sin θ
=

2g tan θ

4r − 3 sin θ
, (82)

while for a uniform disk with k = 1/2,

Ω2 =
4g tan θ

6b + a sin θ
=

4g tan θ

6r − 5a sin θ
. (83)

The result of eq. (83) agrees with that in Prob. 9.23 of D. Morin, Introduction to
Classical Mechanics (Harvard U. Press, 2012), noting that our r is his R, our a is
his r, and our θ is his π/2 − θ.
http://kirkmcd.princeton.edu/examples/mechanics/morin_9.23.pdf
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(d) Instead of using Euler’s equations, we can consider a set of principal axes (1′, 2′, 3′ =
3) that don’t roll with the hoop, but rather rotate about the vertical Ω. The 1′

axis is always horizontal, and 2′ axis always lies in a vertical plane. Hence, at the
moment shown in the figure above, 1′ = 1, 2′ = 2 and 3′ = 3.

The total angular velocity in the lab frame is,

ωtot = ω + Ω = ω(− cos θ ŷ − sin θ ẑ) + Ω ẑ = ω 3̂′ + Ω(cos θ 2̂′ − sin θ 3̂′)

= Ωcos θ 2̂′ + (ω − Ωsin θ) 3̂′, (84)

while the principal moments of inertia are I1′ = I2′ = I3′/2 = kma2/2, so angular
momentum of the rolling wheel is,

L = I · ωtot =
ma2

2
[Ω cos θ 2̂′ + 2(ω − Ωsin θ) 3̂′]. (85)

In the (x, y, z) lab frame, the (1′, 2′, 3′) axes precess about the z axis with angular
velocity Ω, while the angular momentum L is constant in the latter frame. Hence,

τ (x,y,z) =
dL

dt

∣∣∣∣∣
(x,y,z)

=
dL

dt

∣∣∣∣∣
(1′,2′,3′)

+ Ω × L = Ω × L. (86)

At the moment shown in the figure above we can write the angular momentum
(85) as,

L =
kma2

2
[Ω cos θ(− sin θ ŷ + cos θ ẑ) + 2(ω − Ωsin θ)(− cos θ ŷ − sin θ ẑ)]

=
kma2

2
[(Ω cos θ sin θ − 2ω cos θ) ŷ + (Ω(cos2 θ + 2 sin2 θ) − 2ω cos θ) ẑ)], (87)

Then, recalling eq. (74),

τ = ma(g sin θ − Ω2b cos θ) x̂ = Ω × L =
kma2Ω

2
(2ω cos θ − Ωcos θ sin θ) x̂. (88)

Finally, we use eq. (73) to obtain,

2(g sin θ − Ω2b cos θ) = 2kΩ2(b + a sin θ) cos θ − kaΩ2 cos θ sin θ, (89)

Ω2 =
2g tan θ

2(1 + k)b + ka sin θ
, (90)

as found in part (c).

(e) A solution without the use of vectors is discussed in sec. 68, p. 162 of H. Lamb,
Higher Mechanics (Cambridge U. Press, 1920),
http://kirkmcd.princeton.edu/examples/mechanics/lamb_higher_mechanics.pdf



Princeton University 1988 Ph205 Set 9, Solution 6 24

6. Spinning Coin.

A thin coin of mass m and radius a spins without slipping on a table, with its center
at rest (in the absence of friction) and the plane of the coin at angle θ to the vertical.
The point of contact moves in a circle of radius a sin θ with angular velocity Ω about
the vertical.

This is a special case of Prob. 5, with b = 0, so from eqs. (81) and (90) we know that
Ω2 = 2g/a cos θ for a hoop (rather than a coin/solid disk).

However, the rolling constraint, eq. (73), which is the same for a hoop and a solid disk,
says that the angular velocity about the symmetry axis of the coin is Ω sin θ for b = 0,
which goes to Ω as θ → 90◦. This does not correspond to the observed slow precession
of the figure on the face of the coin.

So, we start a new analysis of the problem, in the lab frame, building on the method
of Prob. 5, part (c).

(a) We introduce principal axes (1, 2, 3), with axis 1 always horizontal (out of the
page in the figure above), axes 2 and 3 in a vertical plane, and axis 3 along the
symmetry axis of the disk. These axes rotate about the vertical through the center
of the disk (which is fixed in the lab frame) at constant angular velocity,

Ω = Ωcos θ 2̂ −Ωsin θ 3̂. (91)

In addition, the coin rotates relative to axes (1, 2, 3) at angular velocity ωrel =
ωrel 3̂ about axis 3. Thus, the total angular velocity is,

ω = Ω + ωrel = Ωcos θ 2̂ + (ωrel − Ωsin θ) 3̂. (92)

Furthermore, the instantaneous axis (in the direction of the total angular velocity
ω) is along axis 2, which passes through the (fixed) center of the disk as well
as the point on the disk (instantaneously at rest) in contact with the horizontal
plane. Hence,

ω = ω 2̂ = Ωcos θ 2̂, ωrel = Ωsin θ. (93)

The angular momentum of the spinning coin (of uniform mass density) is,

L = I ·ω = I2ω 2̂ =
ma2

4
Ω cos θ 2̂. (94)
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The angular momentum precesses about the vertical at angular velocity Ω, and
so the torque equation about the center of mass is,

dL

dt
= Ω× L =

ma2

4
Ω2 cos θ sin θ 1̂ = τ = −a 2̂ × N = mga sin θ 1̂, (95)

noting that the force at the point of contact is only the normal force,

N = mg ẑ = mg(cos θ 2̂ − sin θ 3̂), (96)

since the center of mass of the coin is at rest.

Thus, we have that,

Ω2(θ) =
4g

a cos θ
. (97)

(b) As the coin rolls without slipping during one revolution, the point of contact on
the horizontal surface moves in a circle through distance 2πa sin θ .

Meanwhile, the original point of contact on the coin moves the same distance
around the edge of the coin, which is less than the circumference 2πa of the coin.
That is, a figure on the coin rotates by angle α = 2π sin θ in one revolution.
Equivalently, an observer could say that the figure has rotated by angle β =
2π − α = 2π(1 − sin θ).

The angular velocity of rotation of the figure is,

ωfigure =
β

T
=

β

2π/Ω
= Ω(1 − sin θ) = Ω − ωrel, (98)

which goes to zero as θ → 90◦ (and Ω → ∞).

This problem is discussed in Art. 244, p. 196 of E.J. Routh, The Advanced Part of a
Treatise on the Dynamics of a System of Rigid Bodies, 6th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_advanced_rigid_dynamics.pdf

The effect of air resistance is discussed in http://kirkmcd.princeton.edu/examples/rollingdisk.pdf

Air resistance (and rolling friction) cause the spinning coin to fall over, increasing θ and
Ω with time. The normal force also becomes time dependent, and eventually makes the
disk lose contact with the horizontal surface – before the point of contact has reached
the speed of sound.


