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BEFORE YOU COME TO LAB: 

 Read the writeup for this lab, which concerns rolling friction.  This 
topic is not discussed in the Precepts, so the physics discussion in this 
writeup is more extensive than in the previous ones. 

Princeton University Physics 103/105 Lab 
Physics Department  
 

 

LAB #4: ROLLING FRICTION 
 

 
A.  Introduction 
 
In this lab, you will use your cameras and VideoPoint/Excel software to study rolling 
motion on an inclined plane.  
 
The wheel is a great invention in that it avoids loss of mechanical energy due to sliding 
friction.  When a wheel rolls without slipping, static friction is required to avoid 
sliding/slipping at the point of contact of the wheel with the surface on which it rolls.  
Static friction Fs does no work, because the velocity v of the point of contact (where the 
force of static friction applies) is zero, and hence 0.s sW   F v  

A rolling wheel is subject to energy loss associated with friction at the axle, deformation 
of the wheel (or the ball bearings in the wheel) and/or the surface on which the wheel 
rolls.  In this Lab, rolling friction will be modeled as acting on being proportional to the 
normal force N  onhe wheel, directed opposite to the velocity of the center of the wheel, 

                                                         ˆr r N , F v                                                              (1) 

where r is the coefficient of rolling friction, and ˆ = / vv v is the unit velocity vector.   For 
other models of rolling friction, see  http://en.wikipedia.org/wiki/Rolling_resistance 

In this Lab, you will study the motion of a 3-wheeled cart as it rolls up and back down a 
plane inclined at angle   to the horizontal, and you will determine the coefficient r  of 

rolling friction by analysis of the acceleration of the cart, followed by analysis of its 
kinetic energy.  

The rolling friction acts at some radius r (or several different radii) from the center of the 
wheel.  In this Lab you will only determine the quantity  1 /r r r R    where R is the 

radius of the wheel.  If the rolling friction acted precisely at the outer radius of the wheel, 
then like static friction it would do no work.  Pump up your bicycle tires for a lower-
friction (but bumpier) ride! 



 30

Acceleration 

The acceleration a of the cart when it rolls up the inclined plane is different from the 
acceleration a  when it rolls down, although both vectors a and a  point down the slope.  
Each wheel of radius R has angular acceleration /a R  when rolling uphill, and 

/a R   when rolling downhill.  In both cases the angular acceleration is clockwise in 
the figure above.  This angular acceleration is due to a clockwise torque, which implies 
that the force of static friction (at the point of contact of the wheel with the inclined 
plane) points up the slope. 

Considering the system as a whole, it has no acceleration normal to the slope, and 
acceleration of magnitude a or 'a  down the slope.   The normal force on each wheel has 
magnitude N (assumed equal for the three wheels) related by  

                                                       cos ,
3

TM
N g                                                           (2) 

where M is the mass of the body of the cart and m is the mass of each of its wheels, and 

                                                        3 ,TM M m                                                            (3) 

  According to eq. (1) the force of rolling friction on each wheel has magnitude  

                                                cos .
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T
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The acceleration a of the cart when it moves up the slope is related by 

                        sin 3 3 (sin cos ) 3 ,T T r s T r sM a M g F F M g F                            (5) 

When the cart moves down the slope with acceleration a , the direction of rolling friction 
is reversed but its magnitude is the same, while the direction of static friction is the same 
but its magnitude sF   is different.  Thus, 

                                       (sin cos ) 3 .T T r sM a M g F                                                (6) 

If the forces sF  and sF of static friction were equal the coefficient r of rolling friction 

would be simply related to the difference .a a   But, they are not equal, and must be 
determined via a torque analysis of a wheel.   The moment of inertia of each wheel is 
given by  

                                                                  2 ,I kmR                                                         (7) 
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where k = 1 for a hoop, k = ½ for a solid disk, and 0.8k  for the wheels used in this Lab.  
The torque analysis (about the center of a wheel) when the cart rolls uphill is 
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since gravity and the normal force N (and the internal force of the cart on the wheel) exert 
no torque about the center of the wheel.  When the cart rolls downhill, the torque analysis 
is 
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Combining eqs. (5) and (8), and also eqs. (6) and (9), we obtain two equations for the two 
unknowns r and k,  
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(11) 

Note that if r = R then there is no effect of friction.   The solutions to eqs. (10)-(11) are 
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Under the possibly naïve assumption that the relative uncertainties in m, M, r, R and   
are negligible, the uncertainties on the measurements of r  and k are 
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Energy 

Another approach is to consider the work-energy relation of uphill and downhill motion 
of the cart while it travels distance s along the slope.  In this case the change in potential 
energy is 

                                                     sin .TPE M gs                                                       (14) 

When the cart has linear speed v the angular velocity of the wheel is / ,v R   so the 
total kinetic energy of linear plus rotational motion is 

                                      
2 2 23 ( 3 )

.
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                                        (15) 

No work is done by static friction (assuming that the wheel rolls without slipping), but 
rolling friction does (negative) work on the cart.  However, the work done by rolling 
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friction is not simply ,rF s  because the torque due to rolling friction acts to increase the 

angular velocity and does positive work / .rrF s R    That is, the total work done by 

rolling friction of the three wheels has magnitude 

                              3 1 cos 1 .r r r T
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If the cart is launched uphill with initial speed v0 and comes to rest after traveling 
distance s along the slope, the work-energy relation obtained from eqs. (14)-(16) is   
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Similarly, if the cart starts from rest and rolls distance s  down the slope to attain final 
speed vf, then ,f rPE KE W     and 
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From eqs. (17)-(18), 
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Assuming that the uncertainties on m, M, r, R and  are negligible, the uncertainties on r 
and k are 
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B.  Things to Do 

It is important that the optical axis of the camera is perpendicular to the vertical plane of 
the motion of the rolling cart.   That vertical plane should be parallel to the black 
backdrop or your setup.  The person who launches the cart should verify that it moves 
parallel to the backdrop.  If not, try again. 

You will find a ball hanging from a string at your station, which you can use to verify 
that the rotation of the camera about its optical axis is proper.  It is more difficult to 
verify that the optical axis of the camera is perpendicular to the backdrop, but if it isn’t, 
your later fits will have significantly nonzero cubic and quartic terms. 



 33

Weigh your cart using a balance on the center table.  Do not overload the digital 
balances.  There is a sample wheel on the center table, but its mass is not necessarily the 
same at that of the wheels on your cart.  A survey of 5 wheels yielded 85.1 0.7m   g. 

You can adjust the height of you ramp so that is takes about 1 sec for the cart to roll from 
the top to the bottom of the ramp.  Use a meter stick to measure an appropriate height and 
horizontal distance to determine the angle .  Leave the meter stick in view, under the 
ramp along the center of the carts path, so that you can determine the scale factor of your 
movie. 

You only need one good movie for all the analysis in this lab. 

However, you can take a short movie without the cart and digitize the ramp, transfer the 
data to Excel and make a linear fit of y vs. x to determine tan.   Compare with your 
result obtained using the meter stick.  You could also use this movie to determine the 
scale factor of your later analysis 

Main Data Analysis 

In your main movie, launch the cart up the ramp, such that it comes to rest near the top of 
the ramp and then rolls back down the ramp.  After using VideoPoint to digitize the 
trajectory of some point on your rolling cart, transfer the data (x, y, t) to Excel.  Indentify 
which points are on the upward part of the trajectory, and which are on the downwards.  
In general, you will not have digitized a point that corresponds to the cart being exactly at 
rest. 

For the upward moving points, make plots of x vs. t and y vs. t, and then make quartic 
polynomial fits to these.   If the cubic or quartic terms are large compared to their 
uncertainties (as reported by WPTools), consider realigning your camera and/or 
launching the cart on a path more nearly parallel to the backdrop. 

If you haven’t already done so, multiply your x- and y-data by your scale factor to 
convert them to cm (or m). 

To find the factor k of the wheels and the coefficient r  of rolling friction according to 

the formulae of part A, you need the acceleration a, the initial velocity v0, and the 
distance the cart travelled up the ramp before stopping.   And from fits to your data from 
the downward motion of the cart, you need to find a , vf  and s .    

To speed up the analysis of the motion along the inclined plane, divide your digitized 
data   ,i ix y  into two sets, one for motion up the plane, say 1 toi m , and the other from 

motion down the plane, say 1 toi m n  .  For the first set, use Excel to calculate 

   2 2

1 1 ,i i is x x y y     and for the second set,    2 2
.i i n i ns x x y y      



 34

Possible trick: subtract the final time nt from the times it  during the downward motion, to 

redefine t to be zero at your last point.   Then, the linear coefficient in your fit of .i is vs t   
will be ,f xv .  Of course, the acceleration a is twice quadratic coefficient.  The distance 

the cart travelled down the slope is then 2 / 2 ,fs v a   and the uncertainty on this 

measurement is given by 
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Do your measurements of the accelerations a and a  differ by more than their 
uncertainties?  If so, you have evidence for nonzero rolling friction.   Equation (12) then 
gives a particular interpretation of this, which permits you to assign a value (and 
uncertainty!) to the coefficient r  of rolling friction. 

In the energy analysis, you could also estimate the x- and y-coordinates of the point 
where the cart stopped by an interpolation between your upward and downward data 
points, and make a quick error estimate for s and s  as determined by this procedure.   
Which method is “better,” in the sense of giving a smaller uncertainty? 

Did you get “better” results for r  and k via your analysis of the acceleration or of the 

energy? 

C.  Option: Rolling Other Stuff on the Ramp 

What happens when you roll a ball, a hollow "pipe," or a solid circular cylinder down the 
ramp?  If you roll two of them down side by side, which one gets to the bottom first?  Is 
mechanical energy conserved here?  If not, where is it going?   

If time permits, make movies of a couple of these objects rolling down the ramp, and 
look at the acceleration and energy graphs.  Compare the acceleration of these objects to 
that of your cart.  What's going on here? -- There’s more to consider than meets the eye! 

 
 


