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Lab 1: Newton’s Laws: Motion in One
Dimension

1.1 Background

In this lab you will study the motion of bodies moving in one dimension. To minimize
unwanted forces on the test object, you will use an air track (see Fig. 1.1). The glider floats
on a cushion of air above the track, eliminating most of the friction between the glider and
the track. The glider can move freely with no horizontal force, or under the influence of
a constant horizontal force when attached via a tape to a weight suspended off one end of
the air track (see Fig. 1.2). By measuring the time, t, at which the glider passes several
positions, x, you can test Newton’s laws and measure g.

Figure 1.1: An air track with two photogates.
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Figure 1.2: Glider of mass m on the horizontal air track, connected by a tape to mass M
that falls vertically under the influence of gravity.
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2 Princeton University PHY101 Lab 1 Motion in One Dimension

1.1.1 Newton’s First Law

Newton’s first law states that an object will move at constant velocity if no forces are imposed
on it. Thus, defining the x axis to be along the direction of the velocity, its motion obeys:

x = x0 + vt, (1.1)

where x is the position of the object at time t, x0 is its position at time t0, and v is its
velocity. You can test this equation by giving the glider a push (so that it has some nonzero
velocity) and seeing whether x increases linearly in time.

1.1.2 Newton’s Second Law

Newton’s second law states that the acceleration a of an object of mass m is proportional to
the net force F applied to it, ∑

i

Fi = ma. (1.2)

If the net force is constant, then the acceleration a is constant and the motion of the object
obeys:

x = x0 + v0t +
at2

2
, (1.3)

with v0 the initial velocity.

To test this, you need to impose a constant force on the glider. You can do this by
attaching a hanging mass m to the glider (which itself has mass M) via a pulley, as in
Fig. 1.2. Let T be the tension in the tape connecting the masses, and g be the acceleration
due to gravity. The only horizontal force on the glider is the tension from the tape, so
Newton’s second law gives

T = Ma. (1.4)

The hanging mass m feels both gravity (downwards) and tension T (upwards), so the second
law for its vertical motion is

mg − T = ma, (1.5)

noting that the downward vertical acceleration a of the hanging mass is the same as the
horizontal acceleration of the glider. Substituting eq. (1.4) for T into eq. (1.5) gives

mg − Ma = ma, (1.6)

or, upon rearranging terms,

g = a
M+m

m
. (1.7)

By measuring the acceleration a and the masses M and m, you can find gravitational accel-
eration g.
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1.2 Specific Instructions

1.2.1 Setup of the Air Track

Start air flowing into the track by plugging in the air pump and/or turning on the switch
on the power strip.

The air track will probably already be set up, but you should check the following things:

• In the acceleration part of this lab, you will work with a glider, a hanging mass, and
a tape, connected as shown in Fig. 1.2. The tape slides along the curved bit of the
air track with minimal friction. Then, the glider will be accelerated by the hanging
mass. Briefly set this up now, and make sure the tape is long enough that the glider
can start behind photogate 1, and that the glider will get through photogate 4 before
the hanging mass hits the floor.

Figure 1.3: Photogates setup for the acceleration test.

• The four photogates (enclosed in U-shaped plastic tubing) should be set up so that
each one is blocked (and unblocked) twice every time the glider passes by. The system
will record the time when each gate is blocked, and not the times when they become
unblocked. To check the operation and positioning of the photogates, watch the red
lights on the photogate adapter box, which turn on when a gate is blocked.

• The distance between adjacent photogates should be longer than the length of the
glider (so the glider blocks each photogate twice before it blocks the next photogate
for the first time).

• Shade the photogates from direct sunlight.

1.2.2 Timing Software

The photogate timing is measured by a program called Princeton Timer A. Double click on its
icon (in the Physics 101 folder of your lab computer) to open the program. When the window
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Figure 1.4: Correct and incorrect vertical positioning of the photogate.

Figure 1.5: Correct and incorrect spacing between the photogate.

Sensor Confirmation pops up, click on Connect to activate the communication between the
photogates and the program.

Once the program is open, you can click on Collect to start data collection, and on Stop to
end a run. The system records the (eight) times of each successive blocking of a photogate.
That’s all there is to your data collection. Try the system a few times, blocking the optical
beams with your hand repeatedly to watch data being collected.

Note: the data-collection system takes a second or so to organize itself after the Collect
button is pushed. When the system is actually ready to record data the Collect button
changes to Stop. If you get strange (generally negative) times in the first few data entries, it
is probably because a photogate was interrupted before the system was ready to take data.

1.3 Events

Because of the way your measurements will be made, it will be useful to think of yourself as
measuring the times and positions of eight “events” which occur as the glider moves from
one end of the air track to the other:

Event 1: the 1st photogate is blocked by the first “flag” on the glider .
Event 2: the 1st photogate is blocked by the second “flag” on the glider .
Event 3: the 2nd photogate is blocked by the first “flag” on the glider .
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Event 4: the 2nd photogate is blocked by the second “flag” on the glider .
Event 5: the 3rd photogate is blocked by the first “flag” on the glider .
Event 6: the 3rd photogate is blocked by the second “flag” on the glider .
Event 7: the 4th photogate is blocked by the first “flag” on the glider .
Event 8: the 4th photogate is blocked by the second “flag” on the glider .

You will measure the positions x and times t of each of these events, and fit these data
to eqs. (1.1) and (1.3).

1.4 Measuring x Positions

You need to measure the position x of the front edge of the glider at each of the events
described above. You can do this as follows:

• Turn the air off (this makes the measurements a bit easier).

• Note in which direction the glider will be moving, and move the glider to the point
where its first “flag” is just starting to block photogate 1. By watching the lights on
the photogate box to see when the photogate is blocked, you should be able to do
this very accurately. Take your time - every millimeter counts here! Check that the
photogate heights are set so that they are blocked by each of the two flags, and not
blocked when the glider is at in-between positions.

• Once the glider is at this point, measure the position of the front edge of the glider
using the scale attached to one side of the air track. Note, you could equally well use
the back edge of the glider – just be consistent during these measurements. In fact,
the absolute position of the scale on the air track in both eqs. (1.1) and (1.3) affects
only the constant term x0, which is relatively unimportant; it does not affect the value
of the constant velocity in your first measurement, or the value of the acceleration g
in your second measurement.

• Make a measurement of the position of the front edge of the glider when its second
“flag” is just starting to block photogate 1. Then, repeat this procedure for the other
three photogates. Record all your measurements in your lab book.

Once you’ve measured the positions of the photogates, you should avoid touching them
or even shaking the desk - this may dramatically affect the quality of your data!

1.4.1 Motion with Constant Velocity

As your glider moves through the four photogates, the system will record the times of the
“events” 1-8 as discussed above. From your notebook, you know where the glider was at
the time of each event. So you can make a plot of position versus time. To do this, use



6 Princeton University PHY101 Lab 1 Motion in One Dimension

the program Microsoft Office Excel 2003, whose icon is in your Physics 101 folder. (Excel
is a standard spreadsheet and graphing program, and the version on your Lab computer
includes WPtools (Workshop Physics Tools), an add-on capability which simplifies graphing
and curve fitting. See Appendix A for additional details.)

To begin, let’s test Newton’s first law. If a tape is connected to the glider, disconnect
it. Give the glider a push, and let it pass through all four photogates. Remember: this is a
constant velocity test, so you need to remove your pushing finger from the glider before it
will block the first photogate. One way to assure this is to launch the glider in the opposite
direction - it will nicely bounce off the air-track terminator and moves back in the “proper”
direction.

Start Collecting data before it gets to the first gate, and Stop after it leaves the fourth.
If it bounces back and retriggers some of the gates, just use the first eight times recorded
and ignore the later ones.

Without closing down the timer program, double click on Excel with WPtools to (re)open
it. If necessary, answer No to a question about something already being open, and then click
on File and New and OK to bring up a blank spreadsheet.

Transfer your eight time values from the timer program into a column in Excel, starting
in row 2, rather than row 1.

Click on the first value on the data in the Timer program, and hold the mouse button
down while “swiping” the cursor down to the last value. Then, click Edit/Copy in the timer
program, and go back to Excel. Click on one Excel cell to highlight it, and use Edit/Paste to
put the data in a column below the highlighted cell.

Enter your data for the eight x positions in the next Excel column, with each value
adjacent to the corresponding value of t. Add a title to the cell above the data in each
column, such as Time or t to one column, Position or x to the other.

To make a graph of position versus time, you have to tell Excel what to plot in the
vertical and horizontal directions. Swipe your cursor vertically across the title and data
cells corresponding to the horizontal variable (time). Then, while holding down the Control
key, swipe the cursor across the title and data cells corresponding to the vertical variable
(position).

With the horizontal and vertical data selected, click on WPtools / Scatter Plot to make
your graph. Print all “good” graphs, and tape them in your Lab book. Do the points lie
close to a straight line?

The slope of the line should be the velocity of the glider. Estimate the value of the slope
from the printout of the graph (use of a ruler to draw a line on the graph is OK!), and record
it in S.I. units. Does the number seem reasonable?

Next, use the computer to make a graph with a polynomial fit to the data. In terms
of the general equation (1.3) for uniformly accelerated motion in one dimension, we expect
position x to be a quadratic function of time t,

x = a0 + a1t + a2t
2. (1.8)
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Figure 1.6: Sample plot of distance —it versus time for zero net force.

However, the value of the coefficient a2 is expected to be zero for motion with constant
velocity.

Highlight the two data columns as before, and click on WPtools / Polynomial Fit. Choose
Order 2 for the polynomial, and click OK. You get a graph equivalent to the previous one,
but with lots of information added about the computer’s best fit to your data.

You may want to resize the graph box, or to move some of the fit data boxes around
or resize them, to get a good view of the new plot. Your instructor can also show you how
to reset the scales on the graph. For now, let’s focus on the meaning of the computer’s
information concerning its fit to your data.

The numbers a0, a1 and a2 are computed values for the coefficients of the fit equation.
The Standard Error (SE) for each coefficient is the computer’s estimate of how accurately
these coefficients are known, based on how closely your data falls to the fitted line. R2 is a
measure of the goodness of the fit, which need not concern us.1 The quantity symbolize by
the Greek letter sigma σ is, however, of interest. It indicates how far a typical data point
deviates from the fitted line.

If the horizontal force on the glider were zero as desired, the fitted value of the coefficient
a2 should be zero to within 1-2 times its Standard Error, SE(a2). If this is not the case, check
that the air track is level, and that the air flow is sufficient.

If a2 < 2SE(a2), then you can make a better measurement of the velocity, which corre-
sponds to fit coefficient a1, by redoing the Polynomial Fit choosing Order 1 for the polynomial.
Does the (re)fitted value of a1 agree with the velocity you calculated manually from the slope
of your first graph to within 1-2 times the reported Standard Error SE(a1) on a1? If not,
recheck your procedures.

1If you are curious as to the technical significance of the quantities R2 and σ, see Appendix D.
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1.4.2 Motion with Constant Acceleration: Measuring g

Attach a tape to the glider and suspend it shiny side down over the curved bracket so
that a hanger can also be attached, as indicated in Fig. 1.2. Add weights to the hanger so
that its mass m is between 15 and 25 g. The hanger can be passed through the hole in the
weights so they stay on the hanger. Measure the masses of the glider and the hanging mass
using a balance or digital scale, located on the tables in the center of the Lab.

Release the glider and record times using Princeton Timer A as described above. Transfer
these times to Excel and enter the x measurements (if you didn’t save them earlier). The dis-
placement x should have a quadratic dependence on t (eq. (1.3)), but first use the Polynomial
Fit option with Order = 3 to fit the data to an equation of the cubic form

x = a0 + a1t + a2t
2 + a3t

3, (1.9)

which should result in a value of a3 consistent with zero if your data are good. If this is
so, record the results of your cubic fit in your Lab notebook, but if not, check for possible
reasons why your measurement might not be of good quality.

Once your are satisfied that the cubic fit gives no evidence for a significant cubic term
in the acceleration, repeat the fit using Polynomial Fit option with Order = 2. Comparing
eqs. (1.3) and (1.9) we see that the acceleration of the glider is a = 2a2. So, calculate the
acceleration g due to gravity from eq. (1.7) as

g = 2a2
m + M

m
. (1.10)

The corresponding uncertainty σg in your measurement of g can be estimated as

σg = 2SE(a2)
m + M

m
. (1.11)

Include a printout of the plot of x vs. t and the results of the fit of order 2 in your Lab
notebook.

Is your measurement for g within 1-2 times the estimated uncertainty σg of the expected
value?

How does the uncertainty SE(a2) on the fit coefficient a2 obtained with the hanging mass
compare with that obtained previously when the glider slid freely?

Run the experiment two more times, using different hanging masses, and calculate the
value of g twice more. Are the values systematically high or low? If so, can you think of
anything that might cause this experiment to have gone wrong?

From your three measurements of g, you can make another estimate the uncertainty σg

according to

σg =
Max(g) − Min(g)

2
. (1.12)

Compare this with your estimate based on eq. (1.11).
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Figure 1.7: Sample plot of distance versus time for an accelerated glider.

The estimate (1.11) of the uncertainty in your measurement of g does not include the effect
of the uncertainty in your measurements of the masses m and M . In fact, the uncertainty
σm on the hanging mass m leads to an additional uncertainty on g of approximately

σ′
g = g

σm

m
. (1.13)

Is this effect larger or smaller than the uncertainty (1.11) associated with the curve fitting?





Lab 2: Motion in Two Dimensions
This lab extends your exploration of Newton’s laws of motion to the case of two dimensions,
as described in secs. 2.2 and 2.5. To accomplish this, you will use a video camera and sup-
porting computer software to capture, edit and analyze images of two-dimensional motion.
Sections 2.1, 2.3 and 2.4 introduce you to this infrastructure.

2.1 A New Tool

The first goal of this lab is to acquaint you with a new tool. You will use a video camera
to make videos of moving objects, and a computer to digitize the locations of objects in
your videos and analyze the motion. It is important that every member of your group learn
how to use the computer and analysis software. Be sure that you all take turns operating
the system and that, when you are the operator, your partners understand what you are
doing.

When your computer is first turned
on, the screen should show an icon
for a folder named PHY101. Open
this folder, and you will then see a
screen with icons for the programs
that we will use in this Lab.

These include:

• IC Capture 2.3: this program allows you to capture a series of images, called “frames”,
from the signal produced by a video camera.

• Logger Pro 3.8.6.1: the program in which you will do your analysis. It allows you to
determine the positions of objects in each of the video frames that you captured, and
provides ways to generate and analyze graphs of your data.

• Microsoft Office Excel 2003: an extension of the common Excel spreadsheet program,
which allows detailed calculations to be carried out on your data. The WP Tools
(Workshop Physics) extensions, make it easy to use Excel’s sophisticated graphing
functions.

• Student Data: a folder with space for you to put your files.

2.1.1 Capturing a Single Still Image

Your first task is to capture a still picture to put at the front of your Lab notebook to help
your Lab Instructor to help him or her remember your name and face.

11
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1. Open IC Capture, by double-clicking with the left mouse button on its icon in the Ph101
folder. If no video window opens, click on File, then New and Click OK in the Select
Device window. The device size and color should be RGB32 (640x480), and the Codec
should be RGB32.

2. A window should appear that shows an image of whatever your camera is viewing at
the moment. Confirm that the image window is showing live video by waving your
hands in front of the camera. If the picture is too dark or too light, rotate the aperture
ring on the camera lens to change the amount of light level reaching the camera’s
sensor. (The lens admits light through a circular opening, or aperture, whose diameter
is controlled by rotating the ring. The larger the diameter, the more the light and the
brighter the picture.)

3. Aim the camera at yourself and click the Snap Image icon to take a still picture. To
take another picture, first click on the Start/Stop Live Display icon, and then again on
Snap Image. Right click on the still image and Save it, say to the Desktop as a .jpg file.

4. To print your photo, first click on its icon on the Desktop, which opens it in Windows
Photo Viewer.

2.1.2 Digital Video Images

Recall that the moving image on the monitor actually consists of a series of individual
stationary, or still, pictures, appearing at a rate of N pictures, or frames, a second, where
N = 25 for this Lab. Each image consists of an array of 640 × 480 pixels (i.e., picture
elements).

To determine the coordinates of an object in an image frame using Logger Pro, we will
use the mouse to position a cursor over the object, and the system will count the pixel rows
and columns to get to the location of the cursor, starting at the lower left of the image on
the screen. Then, if we know how many pixels correspond to a meter long object, we can
calculate real distances from the pixel counts. This is called “scaling the image”.

2.2 Physics Background

In this Lab you will analyze the trajectory of a bouncing ball, which will be accelerated
by gravity in the vertical (y) direction, but not in the horizontal (x) direction. Its motion
should obey the equations

x = x0 + v0xt, (2.1)

y = y0 + v0yt +
gt2

2
. (2.2)

The experimental setup is sketched in Fig. 2.1. A ball rolls down a fixed rail (the
“launcher”). After it leaves the launcher it falls freely, bouncing at least twice on the table
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Figure 2.1: Setup of the experiment.

top. The camera takes a series of pictures at fixed time intervals during the motion. By
measuring the position of the ball in each picture, you can test eqs. (2.1) and (2.2).

2.3 Acquiring the Data

You are now ready to record a video. Close IC Capture, and click on the icon IC Capture:
Motion in 2 dimensions in the PHY101 window, and be sure the image is live. If not, close
the image window, click File/New and then OK in the Select Device window.

You should not have to adjust the default parameters: Video Size = RGB32 (640x480),
Codec = RGB32, and FPS = 30.00. The Exposure Time should be 1/200 sec or smaller; if
the image is bright enough at 1/500 sec to see the meter stick, use this setting.

The camera lens has adjustment for aperture, focus, and focal length (telephoto). Don’t
partially unscrew the lens from the camera while making adjustment! The aperture (ring
closest to the camera) should be wide open. The focal length (knob farthest from the
camera) should be chosen so that you can view most of the meter stick, the bottom end of
the launcher, and the aluminum plate on which the ball will bounce). The focus adjustment
(knob closer to the camera) does not have a large travel, so it is delicate to obtain the best
focus. It is very important that the optical axis of the camera ends up perpendicular to the
black backdrop of the bouncing ball.

Make a few trial runs, watching the image window to verify that the camera catches the
motion properly. Launch the ball from a position against the rod in the v-groove of the
launcher, so that this process is reproducible. Adjust the position of the launching track, if
necessary, so that the arc between two bounces fills most of the view, and that the plane of
the ball’s trajectory is perpendicular to the camera axis.
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Include a meter stick in the field of view, for scaling purposes; a black spring clip is
attached to provide a clearer indication of a known position, such as 50 cm, on the meter
stick. The meter stick should be the same distance from the camera as the bouncing ball
will be; otherwise, your scale factor will be in error; i.e., the meter stick should be above the
trajectory of the bouncing ball.

Before recording a video, give it a unique name by first clicking on the icon at the right end
of the Video File bar. Then, click on the similar icon at the right end of the Video File bar on
the Video tab of the Recording Settings window that pops up. This should open a directory
window for PHY101/Student Data where you can enter a filename, with a .avi extension.
Click Save and the new filename should appear in the Video File bar of the Recording Settings
window. Click OK and the new filename should appear in the Video File bar of the main IC
Capture window.

To start recording, click the red oval Start button near the upper left corner of the IC
Capture window. To stop recording, click the black rectangular Stop button near the red
Start button, either in the IC Capture or in the Record Video File windows that pops up.

To replay your video, click on the Check Video icon close to the red Start button, and
then click on the Play icon in the AVI Check window. You can also step through your video
one frame at a time by clicking on the outermost arrow icons in the AVI Check window.

2.4 Image Analysis Using Logger Pro

You can record the pixel coordinates of the bouncing ball in your video using a customized
version of Logger Pro software. In the PHY101 window on the Desktop, click on the icon
Motion in 2 dimensions to open the Logger Pro window. To bring your video into Logger Pro,
Double click to browse for a movie, and then on Browse in the Movie Options window. Go to
the Student Data directory, and double click on your video to open it. In case of an error, it
is best to close the Logger Pro window, and then restart it.

The Movie Window

The Movie window in Logger Pro has video controls in the lower left corner with which you
can step through your video frame by frame.

A vertical bar of analysis icons appears to the right of the video window. If these buttons
are not visible, click on the icon Enable/disable video analysis in the lower right corner of the
video window.

If you move the cursor within the video window, the pixel coordinates of the tip of the
finger icon are displayed on the top bar of the video window, ranging between (1,1) and
(648,496).

The cursor style can be chosen with the top two of the analysis button. The crosshair
option is better for this Lab.
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Setting the Scale

Logger Pro assumes the horizontal and vertical axes in pixel coordinates have the same scale.
Set this by clicking on the Set Scale icon to the right of the video. Position the cursor on
one end of the meter stick and drag it to the mark at a known position along the stick. A
line appears on the image to show the scale, and a window asks you for the distance in m of
the scale you have just identified.

If the meter stick is tilted, the scale line should follow that tilt. If you wish to reset the
scale, just click on the Set Scale icon again and repeat the above.

2.4.1 Digitizing Coordinates

Use the slider and/or the arrows at the bottom of the video screen to step through your
video to find the earliest frame in which the ball is clearly rising after the first bounce. In
case of doubt, skip the frame in which the ball might be either falling or rising. A frame
counter is located near the center of the bar above the video image. There may be an issue
of occassional missing or mistimed frames in your video. If you notice this, make a new video
after restarting IC Capture Motion in 2 dimensions.

Step through your video to identify the last frame in which the ball is still falling before
the second bounce. Then return to the first frame after the first bounce.

Click on the Add Point (crosshair) button to start the digitization process. Position
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the crosshair over image of the ball and click. The video screen automatically advances
one frame, and leaves a dot where you clicked on the ball, and automatically advances one
frame. The digitized coordinates appear in VideoAnalysis window to the left of the Logger
Pro screen. Position the crosshair over the ball in the new frame and click. Repeat until the
last frame before the second bound has been digitized.

Your digitized data points also appear in a graph in the Logger Pro screen.

If it appears that you have digitized frames before the first bounce or after the second
bounce, you can Delete the corresponding row(s) on your Excel worksheet; or exit Logger Pro
and restart it, and repeat the entire process of scaling the video and digitizing the relevant
frames.

2.5 Graphing and Fitting Your Data Using Excel

While Logger Pro has built-in graphing and curve-fitting features, it is preferable to transfer
your table of values of x, y and t to an Excel spreadsheet.1 Then, you can apply the methods
you learned in Lab 1 to produce (and print out) plots of y vs. x, x vs. t, and y vs. t. A vs . B
implies that A is plotted along the vertical, and B is plotted along the horizontal axis. First,

1In Logger Pro, highlight your three data columns, and right click to Copy. Then, open an Excel workbook,
click on cell A2, and right click on Paste. Add labels t, x and y in the cells above your data.
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use WPTools to fit the data of x vs. t to a Polynomial of Order 2, and to fit the data of y vs.
t to a Polynomial of Order 3.

According to eqs. (2.1) and (2.2) the coefficient a2 of the fit to x vs. t and the coefficient
a3 of the fit to y vs. t should be zero to within 1-2 times their respective Standard Errors.

2.5.1 A Common Problem

Did your graph of x vs. t have some curvature, rather than looking like a straight line as
implied by eq. (2.1)? A common reason for this is that the plane of the trajectory of the golf
ball was not perpendicular to the optical axis of the camera.2

Any/all of three angles could be poorly aligned:
1. The aluminum angle that initially guides the golf ball could be rotated about the vertical
so the vertical plane of the ball’s trajectory is not perpendicular to the optical axis of the
camera.
2. The camera could be tilted up or down.
3. The camera could be tilted to the left or right.

If the coefficient a2 of the fit to x vs. t or the coefficient a3 of the fit to y vs. t is large,
try adjusting one or more of the above angles. Repeat the experiment3 and check if the new
fits have coefficient a2 of the fit to x vs. t and the coefficient a3 of the fit to y vs. t which are
now more consistent with zero. Continue with such adjustments if these coefficients are still
large compared to their Standard Errors.

2.5.2 Final Analysis

When you are convinced that your optical alignment is good enough, and the fit coefficients
that should be zero are close enough to zero, refit your data of x vs. t to a Polynomial of
Order 1, and refit the data of y vs. t to a Polynomial of Order 2.

Coefficient a1 of the fit to x vs. t is the horizontal velocity of the bounding ball, and twice
the coefficient a2 of the fit to y vs. t should be the acceleration g due to gravity.

Report the x velocity and the y acceleration and their Standard Errors. Is the value of g

2If the horizontal angle between the optical axis and the perpendicular to the plane of the trajectory is
θx in radians, then the coefficient a2 in your fit to x vs. t is approximately a2 = v2

0xθx/D, where D is the
distance from the camera (focal plane) to the plane of the trajectory. If the fit value for a2 is larger (in
absolute value that twice the standard error SE(a2), your optical alignment may be poor.

A consequence of this is that your measurement of g via the y vs. t plot has a systematic error Δg roughly
given by

Δg

g
≈ θx

(
1 − v0xv0y

gD

)
. (2.3)

This effect could well be a major source of error in your measurement of g, so you may wish to make new
movies of the bouncing ball until you get one with a “small” value of θx.

3If you need to repeat the experiment, it is best to close both the IC Capture and the Logger Pro windows,
and begin again at sec. 2.3
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measured in this experiment within 1-2 times its Error of the expected value?

If not, it is very likely that something in your experiment has not been done well. For
example, the digitization of the x-y positions of the ball might not have been done well; the
scaling/conversion of pixels to m might not have been done well; the x and y scale factors
have been assumed above to be the same, but they might be different; the optical alignment
could still be poor.

does each part of the experiment once.

Is the technique of Lab 2 better or worse than that of Lab 1 in measuring the value of g?



Lab 3: The Pendulum

3.1 Background

l

x

mass m

Figure 3.1: A simple pendulum, consisting of a mass m suspended from a string of length l.

The period T of a simple pendulum moving at small angles θ, as shown in Fig. 3.1, is
related to its length l and the gravitational acceleration g by:

T = 2π

√
l

g
. (3.1)

This is derived in your textbook and in section 3.4 of this writeup. In this Lab you will
confirm that the period T is proportional to l1/2 and that T is independent of mass m. Also,
you will use the pendulum to measure the gravitational acceleration g with precision of about
1 part in 1000.

3.2 Specific Instructions

3.2.1 Setup and Timing of the Pendulum

The pendulum is suspended on a string from a clamp with a slot that grips the string. Check
that this slot is oriented vertically.

Set up a photogate at the bottom of your pendulum’s motion. Use the program Princeton
Pendulum Timer (count) in the PHY101 folder to measure the pendulum’s period. Start the
ball swinging from a fixed angle θ ≈ 5◦. (Use the protractor near the pivot point to set this
angle accurately.) Then click on Collect.

The program Pendulum Timer actually measures the time between every second blocking
of the photogate by the swinging ball, which time is a full period of the pendulum swing.
This makes the exact location of the photogate unimportant, but it should be more or less
directly below the point of suspension of the pendulum.
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20 Princeton University PHY101 Lab 3 The Pendulum

Pendulum Timer continues to make measurements until you tell it to Stop. You should
let it take at least a few dozen data points, and perhaps many more on your repeated runs.
The program may not display more than the first 8 data points in the Periods column, but
the number of data points collected is displayed in (every 4th row of) the Number column.
When you click Stop, all the data collected will be displayed in the Periods column.

Transfer your Periods data from Pendulum Timer into an Excel spreadsheet, and calculate
the average and standard deviations of a column of data using the Average and STDEV
commands available on the menu obtained by clicking on the (solid) � symbol next to the
Σ symbol on the Toolbar. See Appendix A for further details. The standard deviation of
your measurements of the period T is a good estimate of the uncertainty σT .

3.2.2 Measurement of g

Measure the period of the pendulum using a fairly long length l and the steel ball, and an
initial angle of about 5◦.

Measure the length l using the 2-meter-long scale, where relevant distance is from the
bottom of the clamp that holds the string to the center of the ball.1 To estimate the uncer-
tainty of your measurement of l, you might have each group member take the measurement,
and use the standard deviation of those measurements. From equation 3.1, you can calculate
g as:

g = 4π2 l

T 2
. (3.2)

Using the methods of Appendix B.3, one can show that:

(
σg

g

)2

=
(

σl

l

)2

+
(
2
σT

T

)2

(3.3)

Using these formulae, estimate the measured value of g and the experimental uncertainty
σg.

Appendix C reports the results of such an analysis based on data collected in Ph101 Lab
3 during a previous year. You may wish to read Appendix B to better appreciate this error
analysis procedure.

A precise measurement of g, using a different technique, was made by J.E. Faller in
Palmer Hall (now the Frist Student Center) room 130 for his 1962 Ph.D. Thesis. He found
that:

g = 980.1604 ± 0.0007 cm/s2. (3.4)

How does your measured value compare with this? How does your uncertainty compare
with the one obtained by Faller? If you repeated the experiment 100 times, what would be
the uncertainty on your answer? In principle, could the uncertainty reach 10−6 m/s2?

1A possible strategy is to measure the diameter of the ball with digital calipers, and add the radius of
the ball to the length of the string.
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3.2.3 Dependence of the Period on Length

Measure the pendulum period with 5 different lengths l around 50, 75, 100, 125 and 150
cm (using an intimal angle of about 5◦). In each case, set up the pendulum, and then find
the value of l, measuring from the pivot point at the top of the pendulum to the center of
the ball. For each length, run Pendulum Timer for at least ten pendulum periods, record the
average period T , and analyze your data for g and σg as in the previous part.

Enter your measurements of l and T into Excel, and use logarithmic plotting (described
below) to find the exponent α in:

T ∝ l α. (3.5)

Does your measurement of the exponent α agree with the expected value of 0.5 to within
the error reported by Excel?

Logarithmic Plots

You expect that T and l are related by an equation of the form:

T = c l α, (3.6)

where c and α are fixed constants, and you want to find the value of the exponent α (which
you expect to be 0.5 for the pendulum). Take the logarithm of both sides of eq. (3.6) to get:

log T = log(c l α). (3.7)

The general logarithmic identities:

log ab = log a + log b, log ab = b log a, (3.8)

can be used to rewrite eq. (3.7) as:

log T = α log l + log c, (3.9)

which is the equation for a straight line. For example, if you set y = log T , x = log l,
b = log c, and m = α, then you obtain the standard form,

log T︸ ︷︷ ︸ = α︸︷︷︸ log l︸ ︷︷ ︸ + log c︸ ︷︷ ︸
y = m x + b.

(3.10)

Thus by fitting a straight line to your measurements of log T vs. log l, you can find value
and uncertainty of the exponent α. To do this with Excel:

• Enter your l and T measurements into two columns of a spreadsheet.

• Calculate log l and log T . Use the LOG10 function in Excel (e.g., cell B1 might contain
the formula =LOG10(A1)).

• Graph and analyze the log l and log T columns using WPtools/Linear Fit.

• The slope a1 and uncertainty SE(a1) reported from the fit are the value of α and its
uncertainty σα.
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3.2.4 Dependence of the Period on Mass

Prior to the insight of Galileo that all objects fall at the same rate (if air resistance can be
neglected) one might have supposed that the period depended on the mass m of the hanging
weight. Test this by measuring the period of the pendulum with a steel ball, an aluminum
ball, and a wood ball, always using the same length of string (using an intimal angle of about
2◦ in this part). Are the periods you measure the same within the measurement precision?2

If not, comment on why the periods might not be the same. Note that if you don’t use
the same length of string for the different masses, you might confuse the dependence of the
period on length (sec. 3.2.3) with possible dependence of the period on mass.

3.2.5 Optional: Dependence of the Period on the Initial Angle

For non-negligible angles, a more complete analysis of the simple pendulum tells us that the
period T is

T = 2π

√
l

g

(
1 +

1

4
sin2 θ0

2
+

9

64
sin4 θ0

2
+ ...

)
, (3.11)

where θ0 is the maximum angle to the vertical during the motion. For “small enough” launch
angles θ0 the terms sin2(θ0/2), and sin4(θ0/2) are very small so that we obtain eq. (3.1). For
example, with θ0 = 10◦ the period would be increased by about 0.2% above the value
predicted by eq. (3.1), and for θ0 = 2◦ the increase is only 0.008%.

Can such small effects be detected in your experiment?

To answer this, take data (for a steel sphere) with initial angles of θ0 = 10◦ and 20◦ and
compare the period with that observed for θ0 = 5◦.

3.3 Optional: The Conical Pendulum

A conical pendulum is one in which the mass swings around at constant speed in a (hori-
zontal) circle, as shown in Fig. 3.2, rather than swinging back and forth in a vertical plane
as in Fig. 3.1.

Using what you have learned in class, derive a formula the period T of a conical pendulum
of length l at angle θ from the vertical. (Hint: first find a formula for the speed of the
pendulum, then use that to find the time it takes to go around the circle). For small θ, your
result should be the same as the simple pendulum formula (3.1).

You can study the conical pendulum with the apparatus set up in the center of the
Lab. This will also be a low-precision experiment, and you need not perform an uncertainty
analysis.

2Pendulum motion is a variant on falling motion, which doesn’t depend on the mass of the falling object
if air resistance can be neglected. As Galileo argued, if heavier objects fell faster, then two masses tied
together should fall faster than either object by itself. But, if the lighter mass of the two fell more slowly, it
would “pull back” the heavier object, and the tied pair would fall more slowly than heavier mass alone.
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l

r

Figure 3.2: A sketch of a conical pendulum. The pendulum swings around in a horizontal
circle.

Practice launching the ball so its motions is in a horizontal circle, rather than in a vertical
one.

Test your formula for the pendulum period by measuring the period of circular motion
(with a stopwatch) for at least three angles θ.

It is difficult to measure θ directly, but you can find it by measuring the diameter of the
circular motion (2r in Fig. 3.2) by operating the pendulum near a meter stick. This isn’t
very accurate, but you should be able to at least qualitatively verify the period formula. In
particular, your formula should predict that either the period increases with θ or it decreases
with θ. Does this prediction hold true?

3.4 Appendix: Derivation of the Pendulum Formula

y

x

W=mg

T

Figure 3.3: Free-body diagram of the pendulum mass.

A simple pendulum is sketched in Fig. 3.1, and a free-body diagram of its mass is given
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in Fig. 3.3. Note that x is measured along the arc of motion of the mass; at the instant
pictured, the x axis is at angle θ above the horizontal. The only force in the x direction is
gravity:

Fx = −mg sin θ. (3.12)

For small angles, and θ in radians, we can approximate sin θ � θ. Further, noting that
θ = x/l, eq. (3.12) becomes:

Fx = −mg
x

l
. (3.13)

Newton’s second law, combined with the definition of acceleration, says:

Fx = max = m
d2x

dt2
. (3.14)

Using eq. (3.13) for Fx and canceling m on both sides of the resulting equation gives:

d2x

dt2
= −g

l
x. (3.15)

This differential equation has solutions like:

x(t) = x0 sin
(√

g

l
t
)

. (3.16)

Note that this goes through one cycle when the argument to the sine function is 2π, that is,
when:

t = 2π

√
l

g
(3.17)

so this is the period of the pendulum.



Lab 4: Collisions in Two Dimensions
In this Lab you will study collisions between two objects (pucks) on a horizontal, low-
friction surface (an air hockey table), as sketched below.1 Use the CCD camera to take a
series of images before, during, and after the collisions, and then analyze the images to test
conservation of momentum and energy and to evaluate the motion of the center of mass of
the objects.

Camera

4.1 Background: Two-Body Collisions

A collision between two bodies is a brief interaction between them during which the forces
are very strong (but equal and opposite according to Newton’s third law).

This Lab involves collisions only between pucks of equal mass, which substantially sim-
plifies the analysis.

4.1.1 Momentum Conservation

The total momentum P of two masses m1 and m2 with velocities v1 and v2 is

Ptotal = m1v1 + m2v2. (4.1)

During a brief collision any external forces are small compared to the forces between the
two masses, and the latter forces sum to zero. Newton’s second law tell us that during the
collision the rate of change of total momentum is equal to the total force, which is negligible.
Hence, the total momentum is the same before and after the collision:

P0 = m1v0,1 + m2v0,2 = m1vf,1 + m2vf,2 = Pf , (4.2)

and we say that the total momentum is “conserved.” In case of equal masses m1 = m2 = m
(as can be assumed in this Lab), eq. (4.2) simplifies to

P0

m
= v0,1 + v0,2 = vf,1 + vf,2 =

Pf

m
. (4.3)

Since momentum is a vector, each component is independently conserved. Write down
the x and y (horizontal) components of eq. (4.3), which component equations are to be tested

1Please don’t actually play air hockey with the lab equipment! The pucks break easily and are difficult
to replace.
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in this Lab. The vertical velocities of the pucks are always zero in this Lab, so momentum
is “obviously” conserved along the vertical direction.

4.1.2 Center of Mass Motion

A concept related to the total momentum of a system is its center of mass velocity, vcm,
defined by

vcm =
Ptotal

mtotal
=

m1v1 + m2v2

m1 + m2

equal⇒
masses

v1 + v2

2
, (4.4)

for a two-body system, where the final form holds for equal masses.

Since total momentum is conserved in a collision, the center of mass velocity is unchanged
during a collision.

If in addition, the total external force on the system is zero, then the total momentum
and the center of mass velocity are constant at all times.

A constant center of mass velocity implies that the position of the center of mass moves
uniformly along a straight line. The center-of-mass position vector rcm, is defined by

rcm =
m1r1 + m2r2

m1 + m2

equal⇒
masses

r1 + r2

2
, (4.5)

for a system of two masses whose position vectors are r1 = x1 x̂ + y1 ŷ and r2 = x2x̂ + y2 ŷ,
where the final form holds for equal masses.

4.1.3 Elastic and Inelastic Collisions

Mechanical energy may or may not be conserved during a collision (in contrast to the total
momentum which is always conserved during free collisions).

If mechanical energy is conserved, we say that the collision is “elastic” (meaning that if
the pucks deform slightly during the collision, they return to their original shape after the
collision, so any mechanical energy that went into the deformation comes out on the recoil).

The mechanical energy of a two-body system is the sum to the kinetic energies of the
two masses. Hence, in an elastic collision (without rotational motion),

KE0 =
1

2
m1v

2
0,1 +

1

2
m2v

2
0,2 =

1

2
m1v

2
f,1 +

1

2
m2v

2
f,2 = KEf ,

equal⇒
masses

v2
0,1 + v2

0,2 = v2
f,1 + v2

f,2. (4.6)

If mechanical energy is not conserved during a collision, we call this an “inelastic” colli-
sion. In particular, if the two pucks stick together after the collision (sec. 4.2.5), this collision
is called “completely inelastic”, and

vfinal = vcm =
m1v0,1 + m2v0,2

m1 + m2

equal⇒
masses

v0,1 + v0,2

2
. (4.7)
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After a completely inelastic collision, the joined objects then spin about their (moving)
center of mass position. Nonetheless, linear momentum is still conserved in such inelastic
collisions.2

4.2 Specific Instructions

The camera and software are the same as you used in Lab 2 (the bouncing ball). If needed,
see that writeup for camera and image analysis instructions. Begin by opening IC Capture:
Motion in 2 dimensions in the PHY101 folder.

4.2.1 Setup

Turn on the blower to supply air to the table. Make a few trial runs at colliding two simple
pucks (no magnets, no Velcro bands). For your measurements, the collisions should not be
“head-on” (1-dimensional). But while practicing, try to arrange a head-on collision between
a moving puck and one at rest. What is the simple result of such a collision? Weigh each of
the pucks and record the results in your notebooks.

Include a meter stick in your video; rest it on the wire frame around the edge of the air
table, close to one of the longer sides. Add 2 black metal clips to the meter stick to make it
easier to identify a known distance in your video.

Record a video (in the folder Student Data) of a collision between your two pucks when
both have nonzero initial velocity. It is preferable if none of the puck velocity vectors, nor
vcm, is parallel to the edges of the air table, and that the collision is NOT “head-on.” The
movie should contain several frames after you release the puck but before they collide. You
can replay your video using the Check Video button. If you need to remake the video, it may
be simplest to close and reopen IC Capture.

Use the Logger Pro file Collisions in 2 dimensions in the PHY101 folder to digitize the
position of the pucks in your movie. Open your movie that was stored in the Student Data
folder. If desired, drag the small square in the lower-right corner of the movie window to
enlarge it.

Click the crosshair button to the upper right of the movie window if you wish the cursor
to be of this type, rather than the default hand icon.

Use the Set Scale button and then the cursor to drag a line along the image of the meter
stick to define the distance between the two black reference marks.

Step though your movie using the double-arrow buttons in the lower-left corner to find
the first frame in which the pucks are in steady motion after their launch.

Verify that the Set Active Point button of the right side has Point Series X:Y checked

2There is another conservation law that applies to collisions, namely conservation of angular momentum.
This law can be helpful in understanding the details of inelastic collisions, but we do not pursue this here.
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before you begin digitizing the positions of the center of the first puck.

Position the cursor on the center of the first puck and click. The values of time, and of
the (scaled) x and y coordinates should appear in the table to the left, and on the graph
(possibly under the movie window). The video should advance one frame, and a dot appear
at the point you digitized in the previous frame.

The dots can be made to appear/disappear via the Toggle Trails button to the right of
the movie window.

Continue digitizing the position of the first puck, both before and after its collision with
the second puck, until the first puck hits something else (such as the wire frame around the
edges of the air table). If you digitize frames after the second collision, this should appear
as “kink” in the graph near the end of the data, and these point should be ignored in later
analysis.

To digitize the positions of the second puck step your video back to the first “good”
frame, and use Set Active Point to enable Point Series X2:Y2. Click on the position of the
second puck, and proceed through your video as for the first puck.

4.2.2 Center of Mass Motion

Before the era of video cameras and computer analysis programs, the students took a Polaroid
photo of the collision with strobe illumination. This permitted simple analyses based on
connecting dots on the photo, as shown on the next page. You could still perform the
graphic analysis on a printout of the movie window after all digitized points are shown. You
do not need to do this here, although this technique will be used in sec. 4.2.5.
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To perform a computer analysis, Copy your 5-column data table from Logger Pro to Excel,
placing the top-left data point in cell A2. Enter column labels in the cells A1-E1.

v
v01

02

v

v

f1

f2

Image of a collision.
Calculating initial and final
velocities.

The center of mass at a given
time is highlighted by a dot.

Calculate the corresponding coordinates (xcm, ycm) of the center of mass of the system
in each frame of the movie, using Excel to implement eq. (4.5) (See Appendix A.3). Use
WPTools to make fits of a Polynomial of Order 2 to each of xcm vs. t and ycm vs. t.

If there are no external forces (and there shouldn’t be in this experiment), the center of
mass will travel in a straight line at constant velocity. Do the positions of your center of mass
follow a straight line, and does its speed appear constant? That is, are the fit coefficients a2

equal to zero within 1-2 times their standard errors SE(a2)?

4.2.3 Is Momentum Conserved?

Test conservation of momentum by checking that the equations you derived relating the
total momentum before and after the collision hold true. To do this, you will need to find
the x and y velocities of the two pucks before and after the collision. You can do this using
the data you have already stored in an Excel worksheet, to make eight Linear fits (and plots,
using WPTools) of the x- and y-components of the velocities of both pucks, before and after
the collision. In each fit of position vs. time, coefficient a1 represents the velocity component.

If momentum is conserved, eq. (4.3) implies that3

Δx =
ΔPx

m
= v0x,1 + v0x,2 − vfx,1 − vfx,2, and Δy = v0y,1 + v0y,2 − vfy,1 − vfy,2, (4.8)

should be zero to within the experimental uncertainty, σΔx,y = [
∑4

1 SE(a1)
2]1/2, as can be

computed from the 4 fits of x-position vs. time and from the 4 fits of y-position vs. time,
respectively.

3Equation (4.8) assumes that the two pucks have equal mass. If you prefer to perform a more accurate
analysis which includes the masses of the pucks, feel free to do so.
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4.2.4 Is Energy Conserved?

Check energy conservation using the velocities you measured. According to eq. (4.6),4 if
energy is conserved the ratio

KEf

KE0
=

v2
fx,1 + v2

fy,1 + v2
fx,2 + v2

fy,2

v2
0x,1 + v2

0y,1 + v2
0x,2 − v2

0y,2

(4.9)

should be unity (i.e., = 1).

Into what other forms of energy might the lost kinetic energy have been converted?

4.2.5 Velcro Pucks and Totally Inelastic Collisions

Put Velcro straps around a pair of (non-magnetic) pucks. Now when the pucks collide
they will stick together. Make a video of a collision for which the pucks rotate slowly after
colliding; it is better is the initial velocities of the puck are high, and again don’t use a
“head-on” collision. Digitize the positions of the centers of the two pucks before and after
the collision, being sure that Toggle Trails shows the points that you have digitized on the
movie screen.

Don’t use Excel for data analysis in this part. Instead, Copy the movie screen from Logger
Pro and Paste it into Paint (which program is on your Lab PC, if not on the Desktop). Right
click on the image of the movie screen in Paint and click on Invert Color so your digitized
dots will appear against a light background. Then, Print the image from Paint (which should
occupy most of a sheet of paper).

4As does eq. (4.8), eq. (4.9) assumes that the two pucks have equal mass. If you prefer to perform a more
accurate analysis which includes the masses of the pucks, again feel free to do so.
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Even though the individual pucks aren’t moving in straight lines after the collision, the
center of mass should move in a straight line. Use a ruler and pen/pencil to find the center
of mass in each frame (of each pair of dots) as sketched below. Do the points line up? Is
momentum conserved, i.e., is the spacing between successive positions of rcm the same before
and after the collision? Is translational kinetic energy conserved, i.e., does v2

0,1+v2
0,2 = 2v2

f,cm,
where the speeds v are proportional to the spacings between successive locations of r0,1, etc.



Colliding Velcro pucks.

Diagram of puck motion.
After the collision, the pucks
stick together (and slowly
rotate in a clockwise direction
in this example).

Center of mass of the Velcro
pucks.

4.2.6 Optional Study: Magnetic Pucks

Experience in this Lab has been that a substantial fraction of energy is usually lost in
collisions in which the pucks actually hit each other. This energy loss can be reduced if the
pucks interact without contact. This can be done using magnetic pucks, which can repel each
other without actually touching. Note: the magnet pucks are fragile, and can be damaged if
dropped or harshly handled.

Practice launching the magnetic pucks so that they come close to each other, and their
paths are changed, but they do not touch. You may need to use relatively low puck velocities,
and to decrease the frame rate when taking your videos.

Once you’ve gotten a good video using the magnetic pucks, you could digitize the posi-
tions of the center of the pucks, and make a graphical analysis of the center-of-mass motion
as in sec. 4.2.5 (or make computer analyses using Excel). Is momentum conserved for the
case of magnetic pucks? To address the issue of conservation of energy, you would need to
include the kinetic energy of rotation of the two-puck system after the collision, which could
be the topic of another Lab session.





Lab 5: Rotational Motion

5.1 Experimental Apparatus

In this experiment you study rotational motion and its connection with translational motion.
The experimental apparatus is sketched in Fig. 5.1. A large disk (radius r1) and an attached
smaller disk (radius r2 rotate together on an axle. A string is wound around the smaller disk,
and a mass m is attached. As the mass falls under gravity, the pulley undergoes angular
acceleration.

m

2r

r1

Photogate

m

axis of rotation

photogate

VIEW
SIDE

axle

Figure 5.1: A sketch of the experimental apparatus.

In this type of apparatus, sometimes called Atwood’s machine, the vertical acceleration a
of mass m is much less than g, so the behavior of accelerated motion is easier for the human
eye to discern.

5.2 Moment of Inertia of the Pulley

5.2.1 Background

When a body of mass m rotates about an axis, its motion can be analyzed using quantities
analogous to those found useful for linear motion. Namely,

position x → angle θ (= s/r),
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velocity v → angular velocity ω (= vs/r),

acceleration a → angular acceleration α (= as/r),

mass m → moment of inertia I (= kmr2),

force F → torque τ (= Fr sin θ, where θ = angle between F and r),

F = ma → τ = Iα.

The moment of inertia I of a uniform disk is

I =
1

2
Mr2 =

πρr4h

2
, (5.1)

where M = πρr2h is the mass of the disk of mass density ρ, radius r and thickness h
(see Cutnell and Johnson Table 9.1). According to eq. (B.13) of Appendix B, the relative
uncertainty σI/I in the moment of inertia I is given by

(
σI

I

)2

=
(

σM

M

)2

+
(
2
σr

r

)2

=

(
σρ

ρ

)2

+
(

4σr

r

)2

+
(

σh

h

)2

. (5.2)

5.2.2 Specific Instructions

The actual pulley (Fig. 5.1) consists of two disks of masses M1 and M2 with radii r1 and r2,
respectively. The total moment of inertial I of this pulley is

I = I1 + I2 =
1

2
M1r

2
1 +

1

2
M2r

2
2 =

πρ

2
(r4

1h1 + r4
2h2). (5.3)

Measure the outer radius r1 and thickness h1 of the (aluminum) pulley (without dis-
mounting it). Also measure the radius, r2, and thickness, h2, of the smaller disk, and then
calculate the moment of inertial I using eq. (5.3), taking the density of aluminum to be

ρ = 2.70 ± 0.01 g/cm3. (5.4)

Which equipment you should use to make your measurements as accurate as possible? Does
the moment of inertia of the smaller disk make a significant contribution to the total moment
of inertia I of the pulley? Estimate the uncertainty σI1 of the larger disk using eq. (5.2). How
does the moment of inertia I2 compare with the uncertainty σI1 of the moment of inertia I1

of the larger disk?

5.3 Measuring I from Rotational Dynamics

5.3.1 Background

An alternative method of measuring the moment of inertia I of the pulley uses its acceleration
by a falling mass. The mass is attached to a string, which is wrapped around the smaller
part of the pulley (radius r2), as shown in Fig. 5.1.
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Analysis of the system is straightforward. First consider the pulley. The tension T of the
string exerts a torque1

τ = Tr2 (5.5)

about the axle of the pulley, since the tension vector T is at a right angle to the radius vector
r2. This torque leads to an angular acceleration α of the pulley, related to torque by

τ = Iα. (5.6)

Combining these gives

I =
Tr2

α
. (5.7)

Next consider the falling mass m. The (vertical) forces on mass m are the tension T and
gravity mg, so Newton’s second law says:

mg − T = ma, (5.8)

where g is the gravitational acceleration constant and a is the acceleration of the mass. Since
the string is wrapped around the pulley at radius r2:

a = α r2. (5.9)

Combining these gives an expression for tension:

T = m(g − α r2). (5.10)

Substituting this into eq. (5.7) yields:

I =
mg r2

α
− mr2

2. (5.11)

For an estimate of the uncertainty σI on the moment of inertia I , note that eq. (5.11)
can be rewritten using eq. (5.9) as

I = mr2
2

(
g

a
− 1

)
≈ mg r2

a
=

mg r2

α
, (5.12)

where the approximation holds since a � g. Then, using eq. (B.13) we have
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. (5.13)

1Clockwise torques and downward translational motion are taken to be positive.
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5.3.2 Specific Instructions

Use a falling mass of m ≈ 200 g in this part, to measure the moment of inertia of the
pulley. Measure the value of m with a scale. Wrap the string around the smaller disk in
a single layer so that the rounds of the string do not overlap, avoiding the groove. For
precision results, measure the diameter of the string with the digital caliper. and increase
your previous measurement of the radius r2 of the smaller disk by the radius of the string to
obtain the lever arm through which the torque acts.

Use a photogate and the program Princeton Timer A to measure the angular acceleration
α of the pulley. Two tabs are attached to the larger pulley; they will cause the photogate to
be blocked at intervals of π radians. Make sure that both tabs block the timer gate.

The system will record the times when the photogate is blocked. Thus, each time reported
by the computer is the time it takes the pulley to turn an integer multiple of π radians.

Start the Timer program before releasing the mass (recall sec. 1.2.2), and stop the Timer
before the mass hits the ground. Leave the Timer on long enough to record at least 5 time
intervals.

The angular motion of the pulley due to the constant angular acceleration α is described
by

θ = θ0 + ω0t +
1

2
αt2. (5.14)

You can find both α and σα by fitting a curve to a plot of θ versus t. Use Excel and WPTools
with a Polynomial of Order 3. The fit coefficient a3 should be 0 to within 1-2 times the
reported error SE(a3). Then, α = 2a2 and σα = 2SE(a2).

Use your measurement of α and eq. (5.11) to calculate the moment of inertia I of the
pulley. Note that this requires angle θ to have been measured in radians. Calculate the
uncertainty σI using eq. (5.13).

Compare this value of I with the value (5.3) you calculated from the dimensions of the
pulley. Do they agree within the larger of the uncertainties σI obtained from eqs. (5.2) and
(5.13)?

5.4 The Block and Tackle

In this part of the lab, you analyze the block-and-tackle system sketched in Fig. 5.2. First
examine the system in equilibrium, then analyze the kinetic and potential energies of the
system in motion.

Before setting up the block-and-tackle system, wind the string used in the first part of
this lab around the pulley and secure it with a piece of tape to the large disk. Please don’t
remove it.

Construct the system as shown in the figure. The “fixed” pulley is the one used in the
first part of this lab. The “moving” pulley should have at least 100 g as a load (in addition



Princeton University PHY101 Lab 5 Rotational Motion 37
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Figure 5.2: A sketch of the block-and-tackle system

to the hanger). Measure the mass m2 of the moving pulley (including its hanger + load)
before assembling the system. Tie a string to the axle of the fixed pulley near the hub, pass
it around the moving pulley (in its groove), back up over the fixed pulley, and down to the
hanging mass. The string should be long enough that when the hanging mass (m1) is near
the fixed pulley the moving pulley (m2) is close to the floor. The “vertical” segments of the
string should nearly vertical, permitting the moving pulley and the hanging mass to pass
close to one another. The string should loop around the groove in the hub of the fixed pulley,
and it should not slip when the pulley and the masses move. It is important that there is
no slippage, so loop the string around the hub ≈ 5 times. Also, be careful that the string
freely winds and unwinds without tangling.

5.4.1 Static Equilibrium of the Block and Tackle

Adjust the mass of the hanging weight m1, using the available slotted masses, until the
system is in static equilibrium. Find the largest and smallest masses m1,l and m1,s such
that the system stays at rest. Remove the hanging mass and measure m1,l and m1,s. What
relation do you expect between m1, m2, and the tension in the string? Do your measured
values of 〈m1〉 = (m1,l + m1,s)/2 and m2 agree with this expectation?
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5.4.2 Dynamics and Conservation of Energy of Block and Tackle

Background

Consider what happens if m1 is increased, so the system is no longer in equilibrium. Mass
m1 will fall downwards, causing the moving pulley to move upwards and both pulleys to
rotate. The motion can be analyzed in terms of forces and torques, but it turns out that an
energy analysis is simpler.

The kinetic energy KE of the system at any instant is:

KE =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
I1ω

2
1 +

1

2
I2ω

2
2 . (5.15)

The moment of inertia of the moving pulley, I2, is sufficiently small that the last term may
be ignored. The other terms can be simplified by noting that:

v1 = ω1r2 and v2 =
1

2
ω1r2, (5.16)

where r2 is the radius of the fixed pulley at the point the string is wrapped,2 including the
radius of the string as in sec. 5.3.2. (Why is there a factor of 1/2 in expression for v2?)
Inserting these expressions into eq. (5.15) and simplifying gives:

KE =
1

2

[(
m1 +

1

4
m2

)
r2
2 + I

]
ω2 (5.17)

Now consider the change in potential energy between two times. This is just the change
in mgh for both masses, but here we will consider θ instead h. If the fixed pulley rotates by
an angle of Δθ (in radians), mass 1 falls by height h1 = r2Δθ, while mass 2 rises by height
h2 = r2Δθ/2 (do you see why?). The change in potential energy is then:

ΔPE = m1gh1 − m2gh2 =
(
m1 − 1

2
m2

)
g r2Δθ. (5.18)

If friction in the system can be ignored, then the kinetic energy (5.17) at any moment
should be equal to the change in potential energy (5.18) since the beginning of the motion.

Specific Instructions

Add 150–200 g to the hanging mass m1 and re-attach it to the system. Release the mass and
use Princeton Timer A to record the times of successive half-turns of the fixed pulley, using
the same procedure as in the first part of the Lab. Be sure that you start the Timer after
the mass m1 has started falling, and stop the Timer before the mass hits the floor.

2If you wrap the string in the groove in the hub of the “fixed” pulley, measure this radius/diameter, which
is different from the radius/diameter of the hub.
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To calculate the initial and final kinetic energies using eq. (5.17), you need to know the
initial and final angular velocities of the pulley. The measurements reported are the times of
the pulley when its angle θ is at successive multiples of π radians. Thus, the average angular
velocity in any interval is

ω =
Δθ

Δt
=

π

Δt
. (5.19)

Use the time measurement for the first time interval reported by Princeton Timer to
calculate ω0, the average angular velocity during this interval, which is equal to the angular
velocity at the midpoint of this time interval (if the angular acceleration α is constant).
Then, use eq. (5.17), along with your measurements of m1, m2, r, and I from the first part
of the lab to find the kinetic energy of the system at the middle of the first time interval.
Similarly, use Δt from the last time interval to calculate ωf and the kinetic energy at the
midpoint of this time interval.

For a data set with N numbers, the pulley rotated a total of Δθ = (N − 2)π radians
between the midpoints of the first and last time intervals (why?). Use this in eq. (5.18) to
calculate the change ΔPE in potential energy between the midpoints of these time intervals.

Does your measurement of ΔPE agree with the difference between initial and final kinetic
energy? You need not perform a detailed uncertainty analysis, but if the numbers don’t agree
within 5–10%, look for a gross error somewhere.





Lab 6: Springs and Simple Harmonic Motion

6.1 Background

Springs provide a useful model for many physical systems that exhibit oscillatory behavior.
The key characteristic of springs is that, when stretched or compressed by an amount Δx
from their relaxed position, they exert a force proportional to Δx:

F = −kΔx, (6.1)

where k is the spring constant. If a mass, m, is attached to one end of the spring, it will
oscillate with angular frequency:

ω =

√
k

m
. (6.2)

The corresponding period is:

T = 2π

√
m

k
. (6.3)

In the first part of the experiment you will verify these equations. In later parts you will
analyze systems with more than one spring.

6.2 Specific Instructions

The setup for the first part of the lab is shown in Fig. 6.1. A spring connects a glider of
mass M to one end of an air track. A hanging mass, m, is attached to the other end of the
glider via a piece of magnetic tape shiny side down.

6.2.1 Equilibrium

Analyze the system in equilibrium and find the equation which relates the mass, the spring
constant and the displacement.

Turn on the air track. Measure the equilibrium positions, x, (in meters) of the glider
with an empty hanger and also with at least four different weights. Make sure that you don’t

M

m

k

Figure 6.1: Equipment setup for the first part of the experiment.
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stretch the spring too much such that the normal spring coefficient is affected. Also makes
sure that the hanger is not touching either the ground or the end of the air track. Measure
the masses of the hanging weights on a balance or digital scale for precision results.

Fit a line to a plot of weight mg versus x (Which fit order should you use?) Use the equa-
tion you previously derived to extrapolate k and its uncertainty, σk, from the fit parameters.
Use g = 9.8m s−2 where needed.

6.2.2 Oscillations of a Single Spring

If you displace the glider and release it, it will oscillate back and forth on the air track. Set
up a photogate so that it is blocked twice per cycle (once for each direction of motion); only
the taller tab on the glider should intercept the beam of the photogate. Now you can use
Logger Pro: Princeton Spring Timer to measure the oscillation period. For each measurement
you make, collect data for several cycles of the motion; then find the average period by
clicking the STAT icon, which will open a statistics window.

The period of oscillation of the glider should be:

T = 2π

√
mtotal

k
= 2π

√
m + M

k
, (6.4)

independent of the amplitude of the oscillation (just as the period of a pendulum was indepen-
dent of amplitude). Test this by recording the period of oscillation for glider displacements
of around 8, 10 and 12 cm. Use larger displacements if necessary to avoid the effects of
damping. Use the same hanging mass m for each of these trials. If you do not get enough
numbers of full periods, adjust the hanging mass accordingly. Do you measure the same
period within the experimental uncertainty?

Next test the dependence of period T on mass m+M (for fixed amplitude of oscillation).
Measure the period of oscillation with the hanger empty, then with 20 g of additional mass,
and finally with 40 g of additional mass.

Compare these measured periods with periods calculated using eq. (6.4) and the spring
constant measured in the previous part.

Another useful comparison can be made by rewriting eq. (6.4) as

k = 4π2 m + M

T 2
. (6.5)

Use this to calculate three values of the spring constant k from your three measurements of
period T as a function of mass M . For a simple statistical analysis, take your best estimate of
k to be the average of the three values, and the uncertainty to be σk = |Max(k)−Min(k)|/2.
Compare these results with those you obtained in part 6.2.1.
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6.2.3 Two Springs

Set up the glider with two identical springs as shown in Fig 6.2. Connect the springs such
that they are horizontal (not slanted downwards). What is the effective spring constant of
the combination of springs? What is the expected period?

M

m

Figure 6.2: A glider connected to the air track via two springs.

Measure the period of the system. Does it agree with what you expected?

You need not do a detailed uncertainty analysis, but the numbers should be in the same
“ball park.” If not, repeat sec. 6.2.1 to verify the spring constants of the springs that you
used.

6.2.4 Three Springs, Two Masses

Set up two gliders and three identical springs as shown in Fig. 6.3. Again, connect the
springs such that they are horizontal (not slanted downwards). Displace one of the gliders
from its equilibrium position while holding the other fixed. Then, let them both go at the
same time. The resulting motion can be quite confusing!

M M

Figure 6.3: Two gliders and three springs.

You need not analyze the motion of the gliders in its full complexity. Instead, you will
study two special cases of motion called normal modes, in which all movement takes place it
a single frequency. It turns out that any one-dimensional system of springs that includes N
masses has N such modes. Thus, the two-glider system has two normal modes.

The first normal mode occurs when the gliders move but the distance between them does
not change. Displace both gliders by the same amount and in the same direction, and release
them. The middle spring should keep a constant length, and the gliders should oscillate with
the same period. Measure the period of oscillation of this mode (T1) using the photogate
aligned on one of the gliders.
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The other normal mode occurs when the gliders move in opposite directions with equal
amplitudes. Displace one glider to the right and the other to the left by the same amount,
and release them. Again the two gliders should oscillate with the same period (but different
from T1. Measure this period (T2). Does the center of mass of the gliders combination move?

Compare your measured periods with those deduced in sec. 6.2.5 below. You don’t need
to do a quantitative analysis of the uncertainty, but your measured periods should be close
to those calculated in the analysis.

If you start the system by holding one glider fixed at its equilibrium position and dis-
placing the other glider, you will create a motion that is a combination of the two modes
studied above. With time, one or the other of the two modes may be more apparent, in an
alternating pattern. However, if you are not attuned to the presence of the two modes, the
motion may appear to be chaotic (a technical term meaning behavior that appears to be
complex but which nonetheless obeys simple laws of physics).

Use a stopwatch to measure the longer period of the complicated general motion, and
compare this with 2T1T2/(T1−T2) based on your measured values for T1 and T2. The longer
period is twice the time between “nodes” of the motion of one of the gliders.

6.2.5 Analysis of Normal Modes for 3 Springs and 2 Masses

During the first normal mode the force from the middle spring never changes since its length
never changes. Therefore, the changing force on, say, the left glider is only due to the change
in length of the leftmost spring. If k is the spring constant of each of the springs, then the
force on the left glider is:

FL = −kΔxL, (6.6)

where ΔxL is the displacement of the left glider. Thus the period of oscillation in the first
normal mode is:

T1 = 2π

√
M

k
. (6.7)

During the second normal mode the left glider experiences changing forces from both the
left and middle springs. After a displacement ΔxL the leftmost spring exerts force −kΔxL

on the left glider. Meanwhile the middle spring exerts force −k(2ΔxL) on the left glider
since the middle spring is compressed (or stretched) twice as much as the leftmost spring is
stretched (or compressed). Note that the direction of the force on the leftmost glider is the
same for both springs, so the net force on the left glider is:

FL = −3kΔxL. (6.8)

Thus the “effective” spring constant is 3k and the period of this mode is:

T2 = 2π

√
M

3k
. (6.9)

The motion after starting with one glider at rest at its equilibrium point and the other
displaced is of the form A cosω1t +A cosω2t = 2A cos(ω2 −ω1)t/2 cos(ω2 +ω1)t/2, for which
the longer period is 4π/(ω2 − ω1) = 4π/(2π/T2 − 2π/T1) = 2T1T2/(T1 − T2).



Lab 7: Fluids

7.1 Flow of a Viscous Fluid in a Circular Pipe

7.1.1 Background

It is a remarkable fact that fluid immediately adjacent to an immobile surface, such as the
wall of a pipe, always has zero velocity. For fluid some distance y from the surface to flow
at velocity v, a force must be applied:

F =
ηAv

y
(7.1)

where A is the area of the surface (or, equivalently, the area of the layer of fluid), and η is
the coefficient of viscosity.

Fluid flow through a circular pipe is slightly more complicated. The flow rate, Q (=
volume of fluid passing any cross section of the pipe each second), through a circular pipe of
radius R and length L is given by Poiseuille’s law:

Q =
πR4ΔP

8ηL
(7.2)

where ΔP is the difference in pressure at the ends of the pipe. The R4 dependence is
dramatic: a small reduction in R leads to a large reduction in the flow rate in the pipe (a
blood vein, for example).

If v is the flow velocity at the center of the pipe, then the flow rate is Q = πR2v/4,
where the factor of 4 arises due to the variation of velocity with distance from the wall of
the pipe. From eq. (7.1), v = FR/ηA, where the force F is the pressure difference times the
cross-sectional area, F = πR2ΔP , and the area A of the surface of a length L of the pipe is
A = 2πRL. Combining these facts, we arrive at Poiseuille’s law (7.2).

7.1.2 Specific Instructions

Use the apparatus shown in Fig. 7.1 to test Poiseuille’s law and to measure the viscosity of
a fluid. The fluid is a heavy machine oil, which fills the large vertical cylinder. Its weight
produces the pressure at the bottom of the cylinder and, therefore, at one end of the small
horizontal tubes. The other ends of the horizontal tubes (once uncorked) are at atmospheric
pressure. Thus, the pressure difference across the length of the small tube is ΔP = ρgh,
where h is the height of the fluid above the outlet of the (possibly curved) tube.

Measure the mass of an empty graduated cylinder

Measure the flow rate in each of the three available tubes (radii 0.349, 0.294 and 0.228 cm),
using a stopwatch and a graduated cylinder. Measure the height of the fluid in the large
vertical cylinder before and after the oil flows out. Use the average of these two values for h
in your calculations. From which point should the height be measured?

45
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h

Figure 7.1: Apparatus for the study of Poiseuille’s law. The vertical cylinder is partly filled
with oil. It is open to the atmosphere at the top. The height h is to be measured between
the liquid level and the outlet of the tube.

Measure the mass of the cylinder plus oil, and read the volume of the oil in the cylinder
to determine the density ρ of the oil.

Hints: Keep the small tubes horizontal to minimize the effect of gravity on the flow. Try
to position the end of the small tube over the center of the cylinder base so that the oil falls
directly to the bottom of the cylinder. If oil adheres to the sides of the cylinder, the volume
measurement will be inaccurate. Do not pour the oil from the small cylinder back into the
big cylinder until the end of the Lab; so don’t let more than 1/3 of the small cylinder fill
with oil during each measurement.

7.1.3 Analysis

First use your data to test the assertion that Q is proportional to R4. Although it isn’t
strictly true, you may assume that each tube has the same length L. Then you can write
eq. (7.2) as:

Q = Constant ×Rα (7.3)

You want to check that the exponent α is 4. Do this by analyzing your measurements of Q
using logarithmic plotting, as discussed in sec. 3.2.3.

Next, determine the value of the viscosity η of the oil. For this part of the analysis,
assume that the exponent α = 4. Rework the Poiseuille’s equation to extract the value of
the coefficient of viscosity, and use your three measurements of Q to calculate three values
of η. Are the values close to each other? Formal uncertainty analysis isn’t required, but look
for a procedural error if the measurements are grossly different.
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7.2 Terminal Velocity

7.2.1 Background

An object falling through a viscous fluid feels three forces.

Gravity pulls the object downward:

Fgrav = mg = ρV g, (7.4)

where ρ and V are the density and volume of the object, respectively, and g is gravitational
acceleration.

The buoyant force pushes the object upward:

Fbuoy = ρfV g, (7.5)

where ρf is the density of the fluid. Finally, there is a drag force which acts to oppose the
motion of the object.

The drag force on a spherical object of radius R moving with velocity v is given by Stokes’
law:

Fdrag = 6πηRv, (7.6)

where R is the radius of the sphere.

Stokes’ law (7.6) is a variant on the basic rule (7.1). The area of the sphere is A = 4πR2,
its volume is V = 4πr3/3, and the y = 2R/3 is the distance from the surface of the sphere
at which the surrounding fluid is hardly perturbed by the motion of the sphere.

When these three forces balance, no net force acts on the sphere, so it falls with constant
velocity, called terminal velocity. Combine eqs. (7.4)-(7.6) for the three forces acting on the
sphere to deduce an expression for the terminal velocity.

7.2.2 Specific Instructions

Test the equation you just derived by measuring the terminal velocity of small lead spheres
falling through the oil you analyzed in the first part of the experiment. The density of lead
is ρ = 11.4 g cm−3.

Measure the diameter of one of the spheres, taking an average of several measurements if
it isn’t really spherical. Don’t squeeze the soft lead out of round during this measurement.
Measure the velocity of the sphere falling through the oil using a stopwatch. Repeat the
experiment for at least three different spheres. Are the measured values close to the values
predicted by your equation?

Solve for the viscosity η and compare with your result from sec. 7.1.
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7.3 Buoyant Force

7.3.1 Background

The density of gas in a helium balloon is less than the density of the surrounding air (ρHe =
0.165 kgm−3 ∗P for pressure P in atmospheres, ρair = 1.29 kgm−3 at 1 atm pressure), so the
balloon feels a net upward force. The buoyant force (7.5) can be balanced by hanging a mass
below the balloon, as shown in Fig. 7.2.

m1

Figure 7.2: Apparatus for the study of buoyant force.

The total weight is:

Wtotal = (m1 + mstring + mballoon + mHe) g (7.7)

where m1 is the mass hanging below the balloon, mstring is the mass of the string, mballoon is
the mass of the (empty) balloon, and mHe is the mass of the helium within the balloon.

The masses of the balloon, string, and hanging weight can be measured on a precision
scale, and mHe = ρHeV where V is the volume of the balloon.

7.3.2 Specific Instructions

Measure the mass of the empty balloon. Fill it with helium, and after stopping the flow of
helium, measure the pressure within the balloon before tieing off the end of the balloon. You
may need the following conversion factors: 1 atm = 15 psi = 1.013 × 105 Pa. Note that the
gas regulator measures gauge pressure Pg = P − Patm rather than the absolute pressure P .

Next measure the volume of the balloon. One way of doing this is to put it on a table,
hold a meter stick vertically next to it, and use a wooden board to help measure its size on
the meter stick (see Fig. 7.3). If d1 is the size of the balloon in its longest dimension and d2

is the size from side to side, its volume is approximately:

V =
4

3
π

(
d1

2

)(
d2

2

)2

. (7.8)
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Figure 7.3: Measuring the dimensions of a balloon.

Cut a piece of string 1-2 feet long, measure its mass and tie it to the bottom of the
balloon. Finally, tie a 5-g hanger to the string and keep adding weights to the hanger until
the balloon is in equilibrium. To fine-tune the hanging weight, you may want to use small
paper clips (about 0.3 g each) or pieces of tape. After you have achieved equilibrium, detach
the hanger and its weights, and measure their total mass on a scale.

For a second measurement of the buoyant force, add enough weights to the hanger that
the balloon + hanger + weights fall, and then use an electronic scale to determine the
apparent mass of the system, as well as the mass of the hanger + weights.

Now you have all data you need to test the buoyancy formula. Calculate the buoyant
force and the weight of the balloon + gas + string. Are they close to each other?





Lab 8: Speed of Sound and Specific Heats

8.1 Safety

Tanks of various gases are be available in the lab. Choose just one of these for your measure-
ment of the speed of sound and, of course, use the same gas for measurement of the density.
The tanks contain gas at high pressure:

Do NOT try to move the tanks; if it is absolutely needed, ask the assistance of an
instructor.

Every tank has three valves: the main valve on the throat of the bottle, which allows gas
to enter a large reduction valve in the regulator, which bleeds the gas slowly out of a small
needle valve into the rubber tubing.

You only need to use the needle valve. The shutoff valve and the regulator valve have
already been adjusted: do NOT tamper with them.

The pressure has been set high enough to give a flow that will fill your flask in a reasonable
time.

If someone should increase the pressure it could cause a flask to blow up! Do NOT touch
the regulator valve.

As you open the needle valve check for a gentle breeze of gas flowing out of the rubber
tube when held near your lips (the “lip test”). Be careful not to inhale the gas. Keep the
needle valve closed except when you need some gas flow.

8.2 Velocity of Sound

In this Lab you will measure the velocity of sound in a gas, and you will weigh the gas in
order to find its density. These measurements will lead to a determination of CP /CV , the
ratio of specific heats at constant pressure and constant volume, and thus allow you to infer
the molecular structure of the gas. Measurements of macroscopic lengths, masses, and forces
provide insights on molecules of size ≈ 10−10 meters and mass ≈ 10−23 grams!

The speed v of longitudinal sound waves in gases is given by:

v =

√
γP

ρ
, where γ =

CP

CV
, (8.1)

ρ is the gas density in kg/m3, P is the gas pressure in Pascals, and γ is the ratio of the specific
heat capacity at constant pressure CP to the specific heat capacity at constant volume CV .
The kinetic theory of gases predicts that γ = 5

3
for an ideal monoatomic gas and γ = 7

5
for

an ideal diatomic gas. At standard temperature and pressure, γAr = 1.66, γCO2 = 1.29 and
γN2 = 1.40.

Using the ideal gas law,

PV = nRT, (8.2)

51



52 Princeton University PHY101 Lab 8 Speed of Sound and Specific Heats

where the gas constant is R = 8.31 J/mole-K, we can express the gas density as

ρ =
m

V
=

Mn

V
=

MP

RT
, (8.3)

where M is the molar mass. What density does the ideal gas law predict for gases Ar, CO2

and N2 at room temperature and atmospheric pressure? What is the velocity of sound for
these gases according to eq. (8.1)?

If the sound wave has a pure frequency f and wavelength λ, then the velocity of sound
is related by

v = fλ. (8.4)

8.2.1 Resonance

The apparatus for measuring the speed of sound is a vertical cylinder of gas (see Fig. 8.1).
The length of the column of gas is adjusted by changing the height of a reservoir of water.
The gas volume is interconnected to the top of the water reservoir so that the gas volume
does not change when the reservoir is raised or lowered.

Figure 8.1: Apparatus for measuring the speed of sound.

A loudspeaker is attached to the top of the cylinder, and it generates sound from an
electrical audio oscillator. The loudspeaker also responds to sound vibrations (like a micro-
phone) and thus the sound waves set up in the cylinder of gas affect it also. This action is
detected by a meter. When the cylinder is in “resonance” you will get a large reading on
the meter (and you may be able the hear that the output of the loudspeaker is louder).

A resonant condition occurs when a pattern of longitudinal standing waves (sound waves)
is established in the gas column when it is driven at certain frequencies. At the resonance,
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the vertical vibration of the gas molecules is maximal (an antinode) at the tube end where
the loudspeaker is located (and the vibration of whose “cone” drives the gas molecules). Of
course, the vibration of the gas molecules is zero (a node) at the liquid surface in the tube.

For a column of height h, standing waves with a node at the bottom and an antinode
at the top can have wavelengths λ related by h = λ/4, 3λ/4, 5λ/4, · · · , (2n − 1)λ/4. The
spacing between neighboring resonances is Δh = λ/2 = v/2f .

For circuit experts: The impedance of the speaker is about 1 Ω, which is small compared to the 50-Ω
output impedance of the wave generator. At acoustic resonance, the extra dissipation of energy by the

loudspeaker increase its impedance by about 25%. This has negligible effect on the current through the

speaker, but increases the voltage drop across it by 25%, which is detected by the AC voltmeter.

8.2.2 Specific Instructions

As a preliminary step, turn on the oscillator at a convenient frequency ≈ 800 Hz. Lower the
water reservoir from an upper position to one about 60 cm below, while watching the meter
and listening to the sound. You should be able to find several positions of the water level at
which resonance occurs.

The meter reading should be near the maximum of its scale at resonance – if it goes
off scale reduce the output level of the oscillator. You might find that a (10-20%) different
frequency will give a stronger indication of resonance. Explore a bit.

You are now ready to fill the cylinder with gas from one of the tanks. Note that the
gas can be fed into the apparatus in a way to flush out the gas previously there, as follows.
Raise the water reservoir as high as possible during flushing to facilitate this. Be sure to
open and close the valves in an order such that the pressure in the tube is not raised above
atmospheric pressure.

Lower the water level from the top and note the approximate location of the first three
resonances. Then raise the water slowly through each resonance. Upward motion makes is
easier to determine the level of water as you will discover on trying it both ways. Find the
position of resonance with the maximum possible accuracy.

Use the relation you previously derived to calculate the speed of sound from the spacing
Δh between resonances and the frequency f of the audio oscillator.

Tip: A good way find a resonance position is for one person to slowly raise the water
level while another records the meter readings. The maximum can be found by graphing the
meter reading vs. position.

Also explore the resonances keeping the height h of the water constant while varying the
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frequency f of the oscillator. What is the lowest resonant frequency for the height that you
have chosen?

8.3 Density of the Gas

Find the gas density ρ weighing a known volume of the gas at atmospheric pressure. Two
flasks of equal volume are provided, one coated with plastic and the other clear.

Determine the useful volume of the coated flask by filling the clear flask with water to
the level of the rubber stopper in the coated flask. Then, measure the volume of water.

Evacuate the coated flask with the vacuum pump. You can tell when this is achieved
when a sharp clacking sound of the pump replaces the initial slurping sound.

Weigh the evacuated flask. Be careful not to drop it. The plastic coating is to minimize
hazard of breakage.

Then fill the coated flask with gas at one atmosphere pressure, using the procedure
described below, and reweigh.

• Open the needle valve and find a gentle flow using the lip test (sec. 8.1). Allow the gas
to flow through the tubing long enough to flush any air out. Attach the hose to your
flask and open the stopcock. The flask is full to over one atmosphere pressure when
the hissing noise at the needle valve stops. Shut the stopcock. Shut the needle valve
and remove the tubing. Open the stopcock slightly and gas will hiss out allowing the
pressure to drop to atmospheric. If you leave the stopcock open too long, ordinary air
will mix with the gas in the flask, thereby reducing its purity.

• Weigh the filled flask, which may still contain gas above atmospheric pressure. Open
the stopcock again briefly, reclose it, and reweigh the flask. If the weight has not
changed again you are finished. If it has decreased, repeat again.

(Why does the weight change at all?)

8.4 What Gas Did You Use?

The tanks are labeled so that they can be distinguished, but the labels indicating what gases
they contain are hidden. Sometime into the lab your AI will provide you with a list of gases
in the tanks. Can you determine which gas you used only on the basis of your measurement
of the gas density, or only on the basis of your measurement of the velocity of sound?

Use eq. (8.1) and your measurements of ρ and v to determine γ = CP/CV for your gas.
Was your measurement accurate enough to distinguish between monatomic, diatomic, and
polyatomic gases?



Appendix A: Data Analysis with Excel
Computers are used for data analysis in any modern physics laboratory, and the Physics
101 lab is no exception. We have built our data analysis system around the program Excel,
which is widely used on and off campus. We’ve added some Workshop Physics (WP) tools to
make graphing data easier, and to let you do regression calculations with uncertainties, but
otherwise we are using the standard, off-the-shelf software.1

If you are already familiar with Excel, great! If not, we’ll give brief instructions here.
Like any software, it can be confusing at first, so don’t hesitate to ask your instructors and
your fellow students for help. Play around with the program a bit to get comfortable with
it.

A.1 Starting things up

• If the computer isn’t already on, turn it on and wait for it to boot up.

• If the Physics 101 window isn’t already open, double click on the Physics 101 icon to
open it

• Double click on Excel with WPtools (look for the X logo) to get the program running.

A.2 Entering Data: a Simple Example1

When Excel is started up, you need to open a spreadsheet to work in. If you are asked if
you want to reopen WPtools, click No. Then go to File→New and click on OK to open a new
Workbook. (If you wanted to open a pre-existing spreadsheet, you would use the File→Open
menu command; if you want to save the new spreadsheet, use the File→Save menu command.
Since we’ll be working with fairly small datasets, neither of these is really necessary for your
lab work.)

Suppose you wish to record some (x, y) data pairs in two columns of a spreadsheet. Go
to Excel, and start entering the data in the upper left most cell (called A1). To do this, move
the cursor to this cell and click on it with the left mouse button. Enter the first x data value
here, pressing Return when you are done. The cell below it (called A2) will automatically be
selected next; enter the second x data value here. Work down the first data column in this
way. If you need to go back and correct any of the numbers, simply move the cursor with
the mouse, click on the relevant cell, and re-enter the number.

Once you’ve entered the first column of numbers, move the cursor to the top cell of the
second column (cell B1) and click the left button to select it. Enter the first y data value.
Press Return/Enter, and enter subsequent y data in the rest of the cells.

1Some online documentation for WPtools is at
http://physics.dickinson.edu/˜wp web/wp resources/Documentation.html

1Note: Menu commands are described as follows: File→Open means move the cursor to the word File on
the line near the top of the screen, press and hold the left mouse button, drag the cursor down to the word
Open, and release the button.
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A.3 Calculations in Excel

Now that your two columns of data are in the computer, select them. Do this by moving the
cursor to the top left cell, pressing and holding the left mouse button, dragging the cursor to
the lowest filled cell in the second column, and then releasing the mouse button. The block
of numbers you entered will now be “selected”, indicated by a blue-grey color.

Go to the WPtools pull-down menu and select Linear Fit. Immediately Excel will display
a plot of your data, along with the values and uncertainties of the best-fit line. Print out a
copy of the results if desired.2

Sometimes you will want to transform your raw data in some way before plotting it. For
example, you may have entered two columns of data as above, but you want to convert the
y values from inches to meters. This is where a spreadsheet program becomes really handy.
Select a blank cell somewhere on the sheet (cell C1 would be a good place). Instead of
entering a number, enter the formula ‘=0.0254*B1, and press Return. Excel will display the
expected numerical value in cell C1, and it will also remember the formula. This is useful
for two reasons, first, if you change the value in B1, the number in C1 will be automatically
updated. Second, you can copy the formula in C1 to other cells, transforming the rest of
column B using the same formula. To do this, first select cell C1. The cell becomes outlined,
and note that there is a little square in the lower right corner of the outline. Move the cursor
to this square, push and hold the left mouse button, drag the cursor down several cells, and
release the mouse button. Voila! Excel will use the same formula to multiply all the cells in
column B by 0.0254.

Excel can do much more complicated arithmetic. For example, you could use the formula
=sqrt(A1) * B1 to take the square root of the values of cells in column A, multiply them by
the values in column B, and put the result in some other column.

You might also want to take differences between the successive items in your data list. If
you type into cell C2 the formula =B2-B1, and then use the little square to fill this formula
into the cells B3, B4, etc., then you will obtain the differences in column C.

If you do a transformation like this, and then you want to do a plot or a curve fit, the
columns of data you want to plot may not be adjacent to each other. No problem. Say you
want to plot cells A1-A10 on the horizontal axis and cells C1-C10 on the vertical axis. First
select A1-A10. (Go to cell A1, hold down the left button, drag the cursor to A10, then release
the mouse button). Then hold down the Ctrl key and select C1-C10. Now both cell groups
A1-A10 and C1-C10 will be selected, but not B1-B10. Run the WPTools→LinearFit routine,
and you will get the plot you want.

2You must first “grab” the plot by left-clicking on an open area inside it. If the plot legends are obscuring
the graph, drag them aside with the mouse. Your can add labels to your plot using the Edit labels option on
the WPtools menu bar.
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A.4 Accumulating Values via Excel Tricks

There will be times in the Physics 101 lab when you want to accumulate sums of a series of
values. For example, you might have measured a series of time intervals,

Δt1 = interval between event 1 and event 2,
Δt2 = interval between event 2 and event 3,
Δt3 = interval between event 3 and event 4,
etc.

You may wish to convert these into a continuous time scale. In other words, you may want
to declare that t = 0 at the time of event 1, and then find

time of event 2 = Δt1,
time of event 3 = Δt1 + Δt2,
time of event 4 = Δt1 + Δt2 + Δt3,
etc.

This is easy to do. Say that Δt1, Δt2, etc., are in cells A1, A2, etc., and you want to put
the accumulated times in column B. First put a 0 in cell B1 (since t = 0 for the first event).
Then go to cell B2 and enter the formula =SUM($A$1:A1). The SUM function simply adds
up the cells in the range specified.

The usefulness of the $ notation becomes apparent when you want to calculate the rest
of the times. Select B2, move the cursor to the square in the lower righthand corner of the
cell border, press and hold the left mouse button, drag the cursor down several cells, and
release the button. The cells in column B are now filled with SUM functions, but in a special
way: The $A$1 in the SUM function call remains the same in all the cells (because of the
$), but the second part of the function call changes from A1 to A2 to A3, ... In other words,
cell B3 now reads =SUM($A$1:A2), cell B4 reads =SUM($A$1:A3), and so on. These are
exactly the formulae we want for the event time calculations, so column B is now filled with
calculated values of t.

A.4.1 Average and Standard Deviation

Excel provides shortcut procedures (macros) that can report various column statistics.

For example, one way to obtain the sum of a column of numbers is to highlight that
column by dragging the mouse over it, and then click on the Σ symbol on the toolbar. The
sum of the column entries will be entered in the cell below the column (without a label to
that effect; if you want a label, type it in, say, the cell to the right of that where the sum
just appeared).

To obtain the average of a column of numbers, highlight the column, click on the (solid)
� symbol next to the Σ, and then click on Average. The average of the column entries will
be enter in the next open cell below the column.
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If you prefer the sum or average to appear in some other cell, you can follow a different
procedure. First, click on the desired cell, which should turn its boundary into a bold
rectangle. Then, click on the (solid) � symbol next to the Σ, and click on Sum or Average.
This should enter a temporary formula in the desired cell. Now drag the mouse over the
column of numbers you wish to Sum or Average, which should outline the column in a dashed
line. Hit Enter and the Sum or Average should appear in the desired cell.

Similarly, the standard deviation of a column of numbers can be entered in a desired cell
by first clicking on it, then on the (solid) � symbol next to the Σ, then on More Functions.
Highlight STDEV in the menu box (scrolling down if necessary) and click OK. Again, this
should enter a temporary formula in the desired cell. Now drag the mouse over the column
of numbers you wish to analyze, which should outline the column in a dashed line. Hit Enter
and the standard deviation about the mean/average should appear in the desired cell.

A.5 Further Notes about Workshop Physics Routines

• Use the WPtools→Polynomial Fit menu command, and set Order=2 to fit lines of the
form y = c0 + c1x + c2x

2.

• If you enter non-numerical text in the cell above each column of data, it will be used
to label the horizontal and vertical axes on the plot.

• The fitting routines always use the first selected column for the horizontal (x) points,
and the second selected column for the vertical (y) points.

• Empty rows are usually ignored (but partially-empty rows may corrupt the fit).

• To delete a plot, select it (move cursor to it and click once), then press the Delete key.
To delete a column of the sheet, select the entire column (by clicking on the letter at
the top) and use Edit→Delete.

• If data are modified after running a fit, the associated plot will be automatically up-
dated, but the fit parameters will not be re-calculated. Usually it is best to delete both
the old plot and fit parameters after updating data.



Appendix B: Estimation of Errors
While the subject of error analysis can become quite elaborate, we first emphasize a basic
but quite useful strategy, discussed in secs. B.1-2. Then, we distinguish between random (or
statistical uncertainties and systematic uncertainties in sec. B.3. Random uncertainties follow
the famous bell curve, as sketched in secs. B.4-5. The important distinction between the
uncertainty on a single measurement, and the uncertainty on the average of many repeated
measurements is reviewed in secs. B.7-7. The subject of propagation of errors on measured
quantities to the error on a function of those quantities is discussed in sec. B.8.

B.1 67% Confidence

Whenever we make a measurement of some value v, we would also like to be able to say that
with 2/3 probability the value lies in the interval [v−σ, v +σ]. We will call σ the uncertainty
or error on the measurement. That is, if we repeated the measurement a very large number
of times, in about two thirds of those measurements the value v would be in the interval
stated.

B.2 A Simple Approach

Repeat any measurement three times, obtaining a set of values {vi}, i = 1, 2, 3. Report the
average (mean),

v̄ =
1

N

N∑
i=1

vi (for N = 3), (B.1)

as the best estimate of the true value of v, and the uncertainty σ as

σ =
vmax − vmin

2
. (B.2)

If you take more than three measurements, you can still implement this procedure with
the aid of a histogram. Divide the range of observed values of v into 5-10 equal intervals
(called bins). Located the bin that contains each measurement, and draw a box one unit
high above that bin. Stack the boxes on top of one another if more than one measurement
falls in a bin. To estimate the error, determine the interval in v that contains the central 2/3
of the measurements, i.e., the central 2/3 of the boxes you just drew, and report the error
as 1/2 the length of this interval.

B.3 Random and Systematic Uncertainties

The uncertainty in a measurement of a physical quantity can be due to intrinsic random
uncertainty (colloquially: error) as well as to systematic uncertainty.
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Random uncertainties lead to difference in the values obtained on repetition of measure-
ments. Systematic uncertainties cause the measurement to differ from its ideal value by the
same amount for all repetitions of the measurement.

Random uncertainties can arise from vibrations of the components of a set-up driven by
random thermal fluctuations, random noise in the electronics, and/or many other small but
uncontrolled effects including quantum fluctuations.

In principle, the effect of random uncertainties can be made as small as desired by
repetition of the measurements, such that the dominant uncertainty is due to systematic
effects (which can only be reduced by designing a better measurement apparatus).

B.4 The Bell Curve

In many cases when a measurement is repeated a large number of times the distribution of
values follows the bell curve, or Gaussian distribution:

P (v) =
e−(v−μ)2/2σ2

√
2πσ

, (B.3)

where P (v)dv is the probability that a measurement is made in the interval [v, v + dv], μ
is true value of the variable v, and σ is the standard deviation or uncertainty in a single
measurement of v. See Figure B.1.

Figure B.1: The probability distribution measurements of a quantity with true value μ and
Gaussian uncertainty σ of a singe measurement. About 68% of the measurements would fall
in the interval between μ − σ and μ + σ, and 95% would fall in the interval μ ± 2σ.

The Table lists the confidence that a single measurement from a Gaussian distribution
falls within various intervals about the mean. If the 100 students in Ph101 each make 100
measurements during these lab sessions, then 10,000 measurements will be taken in all. The
Table tells us that if those measurements have purely Gaussian ‘errors’, then we expect one
of those measurements to be more than 4σ from the mean.
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Table B.1: The probability (or confidence) that a measurement of a Gaussian-
distributed quantity falls in a specified interval about the mean.

Interval Confidence

±σ 68%

±2σ 95%

±3σ 99.7%

±4σ 99.994%

B.5 Estimating Uncertainties When Large Numbers of

Measurements Are Made

One can make better estimates of uncertainties if the measurements are repeated a larger
number of times. If N measurements are made of some quantity resulting in values vi, i =
1, ...N then the mean is, of course,

v̄ =
1

N

N∑
i=1

vi, (B.4)

and the standard deviation of the measurements is

σ =

√√√√ 1

N − 1

N∑
i=1

(vi − v̄)2. (B.5)

Calculus experts will recognize that the operation (1/N)
∑N

i=1 becomes
∫

P (v) dv in the limit
of large N . Then, using the Gaussian probability distribution (B.3) one verifies that

v̄ = 〈v〉 =
∫ ∞

−∞
vP (v) dv, and σ2 =

〈
(v − v̄)2

〉
=
∫ ∞

−∞
(v − v̄)2P (v) dv. (B.6)

B.6 The Uncertainty on Mean of a Uniformly

Distributed Quantity

Not all measurable quantities follow the Gaussian distribution. A simple example is a quan-
tity with a uniform distribution, say with values v equally probable over the interval [a, b].
It is clear that the average measurement would be (a + b)/2, but what is the uncertainty
of the measurement? If we adopt the simple prescription advocated in secs. B.2 we would
report the uncertainty as (b − a)/3 since 2/3 of the time the measurement would fall in an
interval 2(b − a)/3 long. If instead we use the calculus prescription for σ given in eq. (B.6)
we find that

σ =
b − a√

12
=

b− a

3.46
, (B.7)

which result is often used by experts.
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B.7 The Uncertainty in the Mean

Thus far we have considered only the uncertainty or spread in measured values of some
quantity v. A related but different question is: what is the uncertainty on our best estimate
of v (which is just the mean value of our measurements, v̄ = (1/N)

∑
vi)?

The uncertainty on the mean v̄ is surely less that the uncertainty, σ, on each measurement
vi. Indeed, the uncertainty on the mean is given by

σv̄ =
σ√
N

, (B.8)

where σ is our estimate of the measurement error obtained from one of the methods sketched
previously.

Appendix C illustrates eq. (B.8) using measurements of g from past Ph101 labs.

B.8 The Uncertainty on a Function of Several

Variables (Propagation of Error)

In many cases we are interested in estimating the uncertainty on a quantity f that is a
function of measured quantities a, b, ... c. If we know the functional form f = f(a, b, ...c)
we can estimate the uncertainty σf using some calculus. As a result of our measurements
and the corresponding ‘error analysis’ we know the mean values of a, b, ... c and the error
estimates σa, σb, ... σc of these means. Our best estimate of f is surely just f(a, b, ...c) using
the mean values.

To estimate the uncertainty on f we note that the change in f due to small changes in
a, b, ... c is given by

Δf =
∂f

∂a
Δa +

∂f

∂b
Δb + ... +

∂f

∂c
Δc. (B.9)

If we just averaged this expression we would get zero, since the ‘errors’ Δa, ... Δc are some-
times positive, sometimes negative, and average to zero. Rather, we square the expression
for Δf , and then average.

Δf2 =

(
∂f

∂a

)2

Δa2 + ... +

(
∂f

∂c

)2

Δc2 + ... + 2
∂f

∂a

∂f

∂c
ΔaΔc + ... (B.10)

On average the terms with factors like ΔaΔc average to zero (under the important assump-
tion that parameters a, b, ... c are independent). We identify the average of the squares of
the changes relative to the mean values as the squares of the errors: 〈Δa2〉 = σ2

a, etc. This
leads to the prescription

σ2
f =

(
∂f

∂a

)2

σ2
a + ... +

(
∂f

∂c

)2

σ2
c + ... (B.11)
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Some useful examples are

f = a ± b± ... ± c ⇒ σf =
√

σ2
a + σ2

b + ... + σ2
c , (B.12)

and

f = albm...cn ⇒ σf

f
=

√
l2
(

σa

a

)2

+ m2

(
σb

b

)2

+ ... + n2

(
σc

c

)2

, (B.13)

where l, m and n are constants that may be negative.

For more detailed and rigorous analyses one can consult, for example:

• P.R. Bevington and D.K. Robinson, Data Reduction and Error Analysis for the Physical
Science, 2nd ed. (McGraw-Hill, New York, 1992).

• J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements, 2nd ed. (University Science Books, 1997).





Appendix C: Standard Deviation of the Mean
of g
Suppose you make N repeated measurements of a quantity g, such as the acceleration due
to gravity. How well is the value of g determined by these measurements?

For example, during the 2006 sessions of Ph101 Lab 3 a total of 37 different measurements
of g were made, as shown in the histogram Fig. C.1.

Figure C.1: Histogram of the values of g measured in the 2006 Ph101 Lab 3. The horizontal
axis is g, and the vertical axis is the number of times a value of g was reported to lie with
the range of g corresponding to the width of a vertical bar.

A histogram is a graph containing M vertical bars in which the height of a bar indicates
the number of data points whose value falls within the corresponding “bin”, i.e., within
the interval [gj − Δ/2, gj + Δ/2], where gj , j = 1, M and the centers of the M bins and
Δ is the bin width. One can make a histogram of a data set {gi} using Excel/Tools/Data
Analysis/Histogram. Enter the data {gi} in one column of an Excel spreadsheet. Click on the
Input Range: box of the Histogram window; then click and hold the left mouse button on the
first data point, and drag the mouse to the last data point to enter the cell addresses of the
data. Click on Chart Output and then OK to create a basic histogram. If the number/spacing
of “bins” chosen by Excel is awkward, fill a new column with a linear series of 5-10 steps
that begins near the lowest gi and ends near the highest; create a new histogram with the
Excel addresses of the first and last elements of the bin list in the box Bin Range:.

The mean value ḡ is calculated according to

ḡ =

∑N
i=1 gi

N
, (C.1)

and was found to be ḡ = 939.5 cm/s2 for the data shown in Fig. C.1.
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The distribution of the value of g is approximately Gaussian, and the standard deviation
of this distribution is calculated according to

σg =

√∑N
i=1(gi − ḡ)2

N − 1
, (C.2)

with the result that σg = 9.1 cm/s2.

The standard deviation σg is a good estimate of the uncertainty on a single measurement
of g. However, after 37 measurements of g, the uncertainty on the mean value ḡ is much
smaller than σg.

An important result of statistical analysis is that the standard deviation (i.e., the un-
certainty) of the mean of the N measurements is related to the standard deviation of the
distribution of those measurements by,

σḡ =
σg√
N

. (C.3)

For the data shown in Fig. C.1, where N = 37, we obtain

σḡ =
9.1√
37

= 1.5 cm/s
2
. (C.4)

That is, we can report the result of all 37 measurements of g as

g = 979.5 ± 1.5 cm/s2. (C.5)

As a check that eq. (C.3) is valid, we can analyze the data another way. Namely, we can
first calculate the means ḡi for the 5 different sessions of Ph101 Lab 3. Then, we can make
a histogram of these 5 values, as shown in Fig. C.2.

The mean of the 5 means is 979.6 cm/s2, which is essentially identical to the mean of the
37 individual measurements of g. The standard deviation of the 5 means shown in Fig. C.2
is calculated to be 1.6 cm/s2, which is essentially identical to the previous calculation (C.4)
of the standard deviation of the mean.

Concluding Remarks: If N were much larger than what we have here, the histogram
C.1 would approach the Gaussian distribution (the bell-curve) shown in Appendix B. The
peak in the histogram would be very close to the mean value ḡ of the measurements, which
represents the best estimate of g from the data. The standard deviation σg ≈ width/2 is a
measure of the uncertainty of a single measurement,1 while σg/

√
N is the uncertainty on the

best estimate ḡ.

1Strictly speaking, the full width at half maximum of a Gaussian distribution is 2.35σg.
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Figure C.2: Histogram of the mean values of g measured in the 5 sessions of Ph101 Lab 3
in 2006.





Appendix D: Polynomial Fits in WPtools

D.1 Polynomial Regression

In this technical Appendix we sketch the formalism used in the polynomial regression method
for fitting data. This is a generalization of the method of linear regression.

We start with a set of data (xj, yj), j = 1, ...m, and we wish to fit these data to the
nth-order polynomial

y(x) =
n∑

i=0

aix
i. (D.1)

In general each measurement yj has a corresponding uncertainty σj. That is, if the measure-
ments were repeated many times at coordinate xj the values of yj would follow a gaussian
distribution of standard deviation σj. We indicate in sec. D.2 how the program WPtools
proceeds in the absence of input data as to the σj.

Because of the uncertainties in the measurements yj we cannot expect to find the ideal
values of the coefficients ai, but only a set of best estimates we will call âi. However, we will
also obtain estimates of the uncertainties in these best-fit parameters which we will label as
σâi.

The best-fit polynomial is then

ŷ(x) =
n∑

i=0

âix
i. (D.2)

The method to find the âi is called least-squares fitting as well as polynomial regression
because we minimize the square of the deviations. We introduce the famous chi square:

χ2 =
m∑

j=1

[yj − ŷ(xj)]
2

σ2
j

=
m∑

j=1

(
yj −∑n

i=0 âix
i
j

)2

σ2
j

. (D.3)

Fact: exp(−χ2/2) is the (un-normalized) probability distribution for observing a set of vari-
ables {yj(xj)} supposing the true relation of y to x is given by eq. (D.2).

A great insight is that exp(−χ2/2) can be thought of another way. It is also the (un-
normalized) probability distribution that the polynomial coefficients have values ai when
their best-fit values are âi with uncertainties due to the measurements {yj}. Expressing this
in symbols,

exp(−χ2/2) = const × exp

(
−

n∑
k=0

n∑
l=0

(ak − âk)(al − âl)

2σ2
kl

)
, (D.4)

or equivalently

χ2 = const +
n∑

k=0

n∑
l=0

(ak − âk)(al − âl)

σ2
kl

. (D.5)

The uncertainty on âk is σkk in this notation. In eqs. (D.4) and (D.5) we have introduced the
important concept that the uncertainties in the coefficients âk are correlated. That is, the
quantity σ2

kl is a measure of the probability that the values of ak and al both have positive
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fluctuations at the same time. In fact, σ2
kl can be negative indicating that when ak has a

positive fluctuation then al has a correlated negative one.

One way to see the merit of minimizing the χ2 is as follows. According to eq. (D.5) the
derivative of χ2 with respect to ak is

∂χ2

∂ak
=

n∑
l=0

âl − al

σ2
kl

, (D.6)

so that all first derivatives of χ2 vanish when all al = âl. That is, χ2 is a minimum when
the coefficients take on their best-fit values âi. A further benefit is obtained from the second
derivatives:

∂2χ2

∂ak∂al
=

1

σ2
kl

. (D.7)

In practice we evaluate the χ2 according to eq. (D.3) based on the measured data. Taking
derivatives we find

∂χ2

∂âk

=
m∑

j=1

(
yj −∑n

i=0 âix
i
j

) (
−xk

j

)
σ2

j

=
n∑

i=0

m∑
j=1

âix
i
jx

k
j

σ2
j

−
m∑

j=1

yjx
k
j

σ2
j

, (D.8)

and
∂2χ2

∂âk∂âl

=
m∑

j=1

xk
jx

l
j

σ2
j

≡ Mkl. (D.9)

To find the minimum χ2 we set all derivatives (D.8) to zero, leading to

n∑
i=0

m∑
j=1

xi
jx

k
j

σ2
j

âi =
m∑

j=1

yjx
i
j

σ2
j

≡ Vk. (D.10)

Using the matrix Mkl introduced in eq. (D.9) this can be written as

n∑
i=0

Mikâi = Vk. (D.11)

We then calculate the inverse matrix M−1 and apply it to find the desired coefficients:

âk =
n∑

l=0

M−1
kl Vl. (D.12)

Comparing eqs. (D.7) and (D.9) we have

1

σ2
kl

= Mkl. (D.13)

The uncertainty in best-fit coefficient âi is then reported as

σâi = σii =
1√
Mii

. (D.14)
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D.2 Procedure When the σj Are Not Known

This method can still be used even if the uncertainties σj on the measurements yj are not
known. When the functional form (D.1) correctly describes the data we claim that on
average the minimum χ2 has value m− n− 1.1 To take advantage of this remarkable result
we suppose that all uncertainties σj have a common value, σ. Then

χ2 =
m∑

j=1

[yj − ŷ(xj)]
2

σ2
≈ m − n − 1, (D.15)

so that

σj = σ =

√∑m
j=1[yj −∑n

i=0 âix
i
j]

2

m − n − 1
. (D.16)

In practice it appears that the error estimates from this procedure are more realistic if a
fit is made using a polynomial with one order higher than needed for a ‘good’ fit to the data.

Using eq. (D.16) as the estimate of the uncertainty σ on each of the measurements yj,
the matrix Mkl of eq. (D.9) becomes

Mkl =
m − n − 1∑m

j′=1[yj′ −∑n
i′=0 âi′xi′

j′]
2

m∑
j=1

xk
jx

l
j. (D.17)

The estimate (D.14) of the uncertainty on the fit coefficient âi is now given by

σâi =
1√
Mii

=

√√√√∑m
j′=1[yj′ −∑n

i′=0 âi′xi′
j′]

2

(m − n − 1)
∑m

j=1 x2i
j

(D.18)

When WPtools performs a polynomial regression it generates a plot of the data points
and the best-fit curve, along with numerical values of various parameters associated with the
fit. Figure D.1 gives an example of a fit to a set of 8 data points of the form y = x2. The
fit is to the form y = a0 + a1x + a2x

2. The fit coefficients are a0 = −0.4107, a1 = −0.3274
and a2 = 1.1964. The uncertainties (standard errors) on the fit coefficients are reported as
SE(a0) = 4.0070, SE(a1) = 2.0429 and SE(a2) = 0.2216, as calculated according to eq. (D.18).
Note that the uncertainties on coefficients a1 and a1 are larger than the coefficients them-
selves, which tells us that these coefficients are indistinguishable from zero.

Also indicated on the plot are the values R2 = 0.9915 and σ = 2.8721. The latter is the
uncertainty in the data points {yj}, calculated according to eq. (D.16) with m = 8 and
n = 2. The quantity R2 is defined by

R2 =

∑m
j=1[ŷ(xj) − y]2∑m
j=1[y(xj) − y]2

, (D.19)

1The whole fitting procedure does not make sense unless there are more data points (m) than parameters
(n + 1) being fitted.
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where the average y =
∑m

j=1 y(xj)/m. This is a measure of the “goodness of fit”. If the fit is
perfect then ŷj = yj for all j and R2 = 1. It is not obvious, but R2 ≤ 1 always. The extreme
case of R2 = 0 occurs when the fit has the trivial form ŷ(x) = y for all x, which in general is
a bad fit. The qualitative conclusion is that if R2 is not close to 1, the fit results are to be
regarded with suspicion.
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Figure D.1: Sample plot from WPtools Polynomial Fitting.


