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1 Problem

In 1915, Einstein computed the precession of the perihelion of Mercury [1] as the first appli-
cation of his new theory of general relativity, finding that advance in angle θ of the perihelion
with respect to the Sun (assumed to be spherical and not rotating) to be,

Δθ =
6πGM

ac2(1 − ε2)
=

24π3a2

T 2c2(1 − ε2)
, (1)

per revolution, where G is Newton’s gravitational constant, M is the (rest) mass of the Sun,
the orbit has semimajor axis a and eccentricity ε, c is the speed of light in vacuum, and
T 2 = 4π2a3/GM relates the period T of the orbit to a via Kepler’s third law. The result
(1) is accurate to order v2/c2, where v is the velocity of Mercury with respect to the Sun,1,2

and the mass m of Mercury has been neglected in comparison to mass M of the Sun.3,4

1Einstein’s approximate result can be called the first example of the use of a “post-Newtonian approxi-
mation” based on general relativity. See, for example, [2].

2For a review of methods of computing the precession of the perihelion via general relativity, see [3].
3In 1967, Dicke [4, 5] noted that the precession of the perihelion of Mercury could be explained by the

possible oblateness of the Sun. Evidence for this is marginal, as reviewed in [6].
4The famous data on the precession of the perihelion of Mercury were compiled by Le Verrier (1859)

[7, 8]. For a review as of 1903, see secs. 23-24 of [9].
Among the many attempts around 1890 to explain the precession of the perihelion of Mercury, Lévy [10]

proposed that gravity is deducible from a scalar potential,

V =
GM

r

(
1 − ṙ2

v2
g

)
, (2)

where r is the present distance from the source to the observer, ṙ is the speed of the source, and vg is the
speed of gravity. Apparently Lévy was inspired by Weber’s electrodynamics, and hoped that vg = c would
explain the data; however it did not quite. Earlier attempts based on Weber’s electrodynamics include
[11]-[13]. See also an 1895 review by Oppenheim [14].

In 1898, Gerber [15, 16] gave a model of gravity based on the scalar potential,

V =
GM

r(1 − ṙ/vg)2
≈ GM

r

(
1 +

2ṙ

vg
+

3ṙ2

v2
g

)
, (3)

This potential is an approximate form of an approximate retarded potential, as discussed in [17]. From this
potential he computed the precession of the perihelion of Mercury per revolution, finding,

Δθ =
24π3a2

T 2v2
g(1 − ε2)

. (4)

Based on the data, Gerber inferred that vg = c to good accuracy. (continued on p. 2)
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Einstein’s result (1) agrees well with data.5

The question arises as to what is the prediction from special relativity. The literature on
this is rather erratic.

Early work (1906-1911) by Poincare [26, 27], Lorentz [28], de Sitter [29] and others (for
a survey, see p. 158 of [23]) inferred that the result from special relativity for the precession
of the perihelion of Mercury is only 1/6 that of the observed value. An effort by Nordström
in 1912 [30] predicted precession -1/6(!) of the observed value.

In 1917, Lodge [31] claimed to be inspired by special relativity to consider velocity-
dependent corrections to the precession of the perihelion, but actually reverted to Newton’s
analysis of precession in case of a force law 1/rn for n different than 2 [32], as extended by
[34, 35]. A debate followed between Eddington and Lodge [36]-[40].

In 1929, Kennedy [41] gave two analyses of Newtonian precession of the perihelion, with
corrections for retardation and for special relativity, claiming negligible effects in both cases.

It was stated by Goldstein in Exercise 6, Chap. 13 of [42] (1950)6 that the result from
special relativity is 1/6 that of general relativity, our eq. (1).

A review of “relativistic” theories of gravity was given by Whitrow and Morduch in 1965
[43], including Nordström-like theories.

In 1984, Phipps [44] claimed that the result of special relativity is the same as that of
general relativity.

In 1986, Peters [45] noted that Phipps made a computational error, and claimed the
correct result of Phipps’ model is 1/2 that of general relativity. Peters then endorsed the
claim of Goldstein [42] as the “standard” view of special relativity.

In 1987, Biswas [46] claimed that the result of (his interpretation of) special relativity is
the same as that of general relativity.

In 1988, Frisch [47] discussed “post-Newtonian” approximations, claiming that use of
“relativistic momentum” but Newtonian gravity gives the result of Goldstein [42], 1/6 of
the observed precession of the perihelion of Mercury, while including the gravitation due
to gravitational field energy doubles the result, to 1/3 of the observed precession of the
perihelion of Mercury.

In 1989, Peters [48] argued that Biswas’ calculation was in error.
In 2006, Jefimenko proposed a theory of “cogravitation”, and claimed it predicted 1/3 of

the observed precession of the perihelion of Mercury.
In 2008, Biswas [50] published another version of his 1998 paper [46], again claiming

that his model, based on special relativity, explains the full precession of the perihelion of
Mercury.

In retrospect, this is less surprising in that eq. (4) is identical to the result (1) of Einstein [1], computed
via his theory of general relativity with vg = c. This “coincidence” led to accusations that Einstein pla-
giarized Gerber’s result [18, 19], which reverberate to this day. See [20] for extensive comments on various
approximations to gravity in the solar system.

Gerber’s effort is often dismissed as näıve, but is perhaps better appreciated as an attempt at an effective
theory of gravity beyond that of Newton (as discussed in sec. 6.3 of [21]; see also [22]).

Other efforts in the 1800’s to include a finite speed of propagation of gravity are reviewed in Chap. 6 of
[23], and in [24].

5An illustration of how an ad hoc modification to Newton’s “orbit equation” can reproduce the result of
general relativity for the precession of the perihelion is given, for example, in Sec. 8.9, p. 312 of [25].

6Exercise 26, Chap. 7 of the 3rd ed. (2002)
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In 2015, Wayne [51] claimed that special relativity can explain the precession of the
perihelion of Mercury.

In 2016, Lemmon and Mondragon [52] argued that special relativity predicts 1/3 of the
rate of the precession of the perihelion according to general relativity.

In 2020, Corda [53] claimed that Newtonian gravity completely explains the precession of
the perihelion of Mercury (without consideration of relativity), but not that of other planets.
Then, he argued that general relativity also explains the precession, but only if one includes
the effect of “rotational time dilation”.

In 2022, D’Abramo [54] claimed that Corda [53] was wrong.
What is going on here?

2 Solution

2.1 Goldstein

Goldstein [42] deduced the form of a single-particle Lagrangian in special relativity as,

L = −mc2
√

1 − v2/c2 − V, (5)

where m is the rest mass of the particle, whose velocity is v, and V is the potential energy
of the particle. The low-velocity limit of eq. (5) is the usual nonrelativistic form L = T − V
with kinetic energy T = mv2/2.

Goldstein argued that for a particle of electric charge q in an electromagnetic field, one
can use V = qφ − v · A (in SI units), where (φ,A) are the electromagnetic potentials
of the field in some gauge. However, Goldstein did not mention what he considered the
gravitational potential to be in special relativity. One infers that he assumed it to be just
the nonrelativistic form V = −GMm/r for (spherical) masses M and m distance r apart.

2.2 Phipps

Phipps [44] considered the Lagrangian (5), but supposed the gravitational potential in special
relativity, for (spherical) mass m with velocity v with respect to (large, spherical) mass M
is,

V = − GMm

r
√

1 − v2/c2
= −γGMm

r
, with γ =

1√
1 − v2/c2

. (6)

That is, he supposed that the “relativistic mass” γm is also the “gravitational mass” of m.7,8

7In 1911, Einstein [55] considered that ”gravitational” mass equals (relativistic) inertial mass, although
this notion does not appear in the later theory of general relativity, where only rest mass is emphasized.

8In sec. III of [44], Phipps considered the motion of mass m along a radius with respect to (fixed) mass
M , and speculated that this might involve some kind of “antigravity” effect. He seemed unaware of the
literature on this topic, which is reviewed in [56].
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2.3 Peters

This section follows the analysis by Peters in [45]. He used the Lagrangian (5) and Phipps’
form (6) of the gravitational potential energy, and expanded these in powers of 1/c, writing,

L ≈ −mc2 +
mv2

2
+

mv4

8c2
+

GMm

r

(
1 +

αv2

2c2

)
, (7)

where α = 1 for the potential (6), while α = 0 for the nonrelativistic potential used by
Goldstein [42].

Rather than proceeding to deduce Lagrange’s equations of motion, Peters considered the
Hamiltonian (anticipating that dH/dθ will be an “orbit equation”),

H =
∑
i=1,3

pivi − L, pi =
∂L
∂vi

≈ mvi

(
1 +

v2

2c2
+

αGM

rc2

)
, (8)

H ≈ mv2

(
1 +

v2

2c2
+

αGM

rc2

)
+ mc2 − mv2

2
− mv4

8c2
− GMm

r

(
1 +

αv2

2c2

)

= mc2 +
mv2

2
+

3mv4

8c2
− GMm

r

(
1 − αv2

2c2

)
. (9)

The Hamiltonian (9) is independent of time, and so is a constant of the motion, but it is not
the total energy E = T + V , from which it differs by the sign of the term in α. For α = 0,
Goldstein’s assumption, the Hamiltonian is the energy.

This has the implication that the total energy is not conserved in Phipps’ model, which
suggests that Phipps’ model is not physically plausible, and perhaps should not be considered
further.9,10

9Instead of using the approximate Lagrangian (14), we can consider form (5) with the potential energy
(6). Then, instead of eqs. (8)-(9) we have,

L = −mc2

γ
+

γGMm

r
, (10)

H =
∑

i=1,3

pivi −L, pi =
∂L
∂vi

= γmvi +
γ2GMmvi

rc2
, (11)

H = γmv2 +
γ2GMmv2

rc2
+

mc2

γ
− γGMm

r
= γmc2 + (γ2 − γ − 1)

GMm

r
. (12)

If we ignore gravity, setting G = 0, we just have a free particle of mass m, with total energy γmc2, which
equals the Hamiltonian of eq. (12) in this case.

For Goldstein’s assumption that Newtonian gravity should hold in special relativity, we set γ = 1 in the
terms involving G, and the Hamiltonian (12) is the total energy γmc2 + V (for the Newtonian potential
V = −GMm/r).

But, for Phipps’ model, total energy is not conserved, while the Hamiltonian of (12) is a conserved quantity.
10Conservation of energy is a complicated issue in general relativity. See, for example, [57]. But, if we

ignore the nonlinear effect of the curvature of spacetime by the moving object on that object itself, and
ignore the gravitational radiation of the moving object,one can consider that energy in conserved in the
general-relativistic description of the orbit of the moving object about the much larger “fixed” mass M .
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2.3.1 Continuation of Peters’ Analysis

For completeness, I transcribe the rest of Peters analysis in [45].
The (planar) orbit can be described by coordinates r and θ, in which the velocity can be

expressed as,

v2 = ṙ2 + r2θ̇
2
. (13)

The Lagrangian (7) does not depend on θ, so there is a conserved canonical momentum,

L =
∂L
∂θ̇

≈ mr2θ̇

(
1 +

v2

2c2
+

αGM

rc2

)
, (14)

which we identify as the orbital angular momentum. With this, we can express the angular
velocity as,

θ̇ ≈ L

mr2

(
1 − v2

2c2
− αGM

rc2

)
. (15)

Next, Peters followed a method of Newton to replace the radius r by its reciprocal
u = 1/r. For this, we note that,

v2 = ṙ2 + r2θ̇
2

=

(
d

dt

1

u

)2

+
θ̇

2

u2
=

(
dθ

dt

d

dθ

1

u

)2

+
θ̇

2

u2
=

(
−θ̇

u′

u2

)2

+
θ̇

2

u2
=

θ̇
2
u′2

u4
+

θ̇
2

u2

= (u′2 + u2)
θ̇

2

u4
= (u′2 + u2)r4θ̇

2
, (16)

where u′ = du/dθ. From eq. (15), we have,

r4θ̇
2 ≈ L2

m2

(
1 − v2

c2
− 2αGM

rc2

)
. (17)

Using this in eq. (16), we find,

v2 ≈ L2

m2
(u′2 + u2)

(
1 − v2

c2
− 2αGM

rc2

)
. (18)

Peters noted that in the first approximation, v2 ≈ (L2/m2)(u′2 + u2), to rewrite eq. (18) as,

v2 ≈ L2

m2
(u′2 + u2) − v4

c2
− 2αGMv2

rc2
. (19)

With this, the Hamiltonian (9) becomes,

H ≈ mc2 +
L2

2m
(u′2 + u2) − mv4

8c2
− GMmu

(
1 +

αv2

2c2

)
. (20)

For a Newtonian orbit, the total energy E is related to the semimajor axis a by,

E =
mv2

2
− GMm

r
= −GMm

2a
, v2 =

2GM

r
− GM

a
= GM

(
2u − 1

a

)
. (21)
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We follow Peters in using the Newtonian relation (21) for v2 in the terms of order 1/c2 of
the special-relativistic Hamiltonian (20) to find,

H ≈ mc2 +
L2

2m
(u′2 + u2) − G2M2m

8c2

(
4u2 − u

a
+

1

a2

)
− GMmu

(
1 +

αGM

2c2

(
2u − 1

a

))

= mc2 +
L2

2m
(u′2 + u2) − GMmu − G2M2m

2c2

(
(1 + 2α)u2 − (1 + α)u

a
+

1

4a2

)
.(22)

Then, we can find an “orbit equation” by taking the derivative of the (constant) Hamiltonian
with respect to θ,

H ′ =
dH

dθ
≈ L2

m
u′(u′′ + u)− GMmu′ − G2M2m

2c2

(
2(1 + 2α)uu′ − (1 + α)u′

a

)
= 0, (23)

u′′ + u

(
1 − (1 + 2α)G2M2m2

c2L2

)
≈ GMm2

L2
− G2M2m2

2c2L2

(1 + α)

a
= const. (24)

To order 1/c2, it suffices to use the value L2 = GMm2a(1− ε2) of the Newtonian orbit,11 so
the special-relativistic orbit equation is,

u′′ + (1 − k)u = const, where k =
(1 + 2α)GM

ac2(1 − ε2)
� 1. (25)

This equation has solutions of the form,

u(θ) = u0 + u1 cos(
√

1 − k θ), (26)

whose period T in angle θ is, for small k,

T =
2π√
1 − k

≈ 2π

(
1 +

k

2

)
= 2π + πk. (27)

That is, the perihelion of the orbit advances/precesses by angle,

Δθ = πk = (1 + 2α)
πGM

ac2(1 − ε2)
, (28)

per revolution. For α = 0 (Newtonian gravity) this is 1/6 of the result (1) of general relativity,
as claimed in [42]. For the model that the relativistic mass γm is also the gravitational mass,
as in eq. (5), α = 1 and the precession of the perihelion is 1/2 that of general relativity.

The result (1) of general relativity would be predicted by a version of Phipps’ model
with α = 5/2, but this model would not conserve energy, and so cannot be considered a
reasonable explanation.

2.4 Biswas

Biswas’ model [46] seems to be essentially the same as that of Phipps, but with an additional
dimensionless parameter, κ of his eq. (19b), which he sets to 2 to obtain agreement with the
observed precession of the perihelion of Mercury.

11See, for example, eq. (3.63) of [42].
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2.5 Frisch

Frisch’s second “post-Newtonian approximation” [47] included an effect of “time dilation”
vs. distance r from the mass M (in the rest frame of that mass), which is a kind of “curved
time” that goes beyond special relativity, the nominal theme of the present note. He claimed
this led to 1/3 of the observed precession of the perihelion of Mercury.

I consider that “post-Newtonian approximations” start from knowledge of general rela-
tivity and “‘work backwards” to formalism that resembles Newtonian mechanics, (without
metric tensors and notions of curved spacetime). The precession rate (1) is also found in the
“first post-Newtonian approximation”, as reviewed, for example, in [59, 60] and more briefly
in [61]. In contrast, this note concerns additions to special relativity to include gravity that
is related to a single scalar potential for a 2-body system, perhaps via the “weak equivalence
principle, that inertial mass is the same as “gravitational mass”.

The full post-Newtonian approximation reproduces the prediction of general relativity
for the precession of the perihelion of Mercury. See sec. 4.2, p. 46 of [2].

2.6 Jefimenko

Jefimenko’s gravitational theory [49] is a kind of step towards a post-Newtonian approx-
imation, without using general relativity. It apparently leads to the same result for the
precession of the perihelion of Mercury as does Frisch’s approximation [47].

2.7 Wayne

Wayne [51] seemed to argue that the “relativistic mass” of a moving object with rest mass
m should be m(1 + v2/c2) at order 1/c2 rather then the usual approximation m(1 + v2/2c2),
and then claimed that “special relativity” predicts the observed precession of the perihelion
of Mercury.

2.8 Lemmon and Mondragon

Lemmon and Mondragon [52] first reviewed that model of Goldstein [42], using “relativistic
momentum” but Newtonian gravity, confirming that this model predicts 1/6 of the observed
precession of the perihelion of Mercury. In their Sec. IV, they appeared to consider the
model of Phipps [44], which assumes that the “gravitational mass” of moving object m is its
“relativistic mass” γm. But, they proceeded in a slightly different manner than the analysis
of Peters [45] reviewed in our sec. 2.3 above, arriving at the potential energy given in their
eq. (37). From this, they inferred that the precession of the perihelion of Mercury is 1/3 that
predicted by general relativity (which happens to agree with the “post-Newtonian” result of
Frisch, which is a different model).

I am skeptical of the approach of Lemmon and Mondragon, and consider that the analysis
of Peters, given above, is the more correct version of Phipps’ model.
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2.9 Corda

Corda first claimed, in sec. 2 of [53], that according to Newtonian gravity, the nonzero mass of
a planet would make its orbit about the center of mass of the Sun-planet system “precess”,12

in that the period of the orbit is slightly different than if the planetary mass is negligible. As
remarked by D’Abramo [54], it is a coincidence that this “explanation” works for Mercury.

In sec. 3 of [53], Corda misrepresented the discussion in [58] about the effect of the outer
planets on the precession of the perihelion of Mercury, supposing that even when omitting
consideration of the outer planets, the orbit of Mercury could be nonplanar, claiming that
this effect also fully explains the precession of the perihelion.

In sec. 6 of [53], Corda gave a nonstandard analysis via general relativity, not finding the
usual prediction (1). Then, in secs. 7-8 Corda claimed that an effect of the “rotational time
dilation” of clocks on Mercury, when added to his previous general-relativity analysis, fully
explains the precession of its perihelion.

Corda concluded (sec. 9) that he had given three “explanations” of the precession of the
perihelion of Mercury, which he somehow considered to be equivalent rather than distinct.13

A “standard” view is that all three of Corda’s explanations are bogus.

Thanks to Derek Abbott and Germano D’Abramo for e-discussions of the problem.
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