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A recent article by Narayan [1] illustrated that magnetic forces do not obey Newton’s 3rd

law of action and reaction via the example of two “point” electric dipoles whose moments
pi = p0,i e

λt x̂i grow exponentially with time. He correctly found that F12+F21+dPEM/dt = 0
where PEM =

∫
E×B dVol/4πc (in Gaussian units, with c as the speed of light in vacuum) is

the electromagnetic-field momentum associated with the two dipoles.1 This is an example of
a general result by Page and Adams [2], published many years ago, in the so-called Darwin
approximation [3]2 that keeps terms only to order v2/c2 (which ignores electromagnetic
radiation), where v is velocity.3 Narayan’s demonstration is nice in that it holds to all orders
of v/c.

However, Narayan mistakenly claimed that there are “no electromagnetic fields in the far
field zone”, and hence “no radiation is emitted” in his example, based on the appearance of
his eqs. (2) and (3). While those forms are convenient for later computation, they do not well
display the character of the electromagnetic fields of a time-dependent dipole. This was the
topic of the Appendix of [7],4 where the magnetic field of a time-dependent electric dipole
p(t) (at the origin) was shown to be B(r, t) = [p̈]× r̂/c2r+[ṗ]× r̂/c r2 with [p] = p(t− r/c).
The term that varies as 1/r is a “radiation” field, nonzero except in the limit t → −∞ when
the dipole moment is zero by construction. The radiation pattern of Narayan’s two dipoles
can be computed using eq. (66.6) of [4] and Fig. 1 of [1] (shown below) where x̂1 = x̂ and
where x̂2 = ŷ, noting also that r̂ = sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ,

dI

dΩ
=

c r2[Brad]
2

4π
=

[(p̈1 + p̈2) × r̂]2

4πc3
=

λ4[(p1 x̂ + p2 ŷ) × r̂]2

4πc3

=
λ4[(p2

1 + p2
2) cos2 θ + (p1 sinφ − p2 cos φ)2 sin2 θ]

4πc3
. (1)

Then, the total intensity, integrated over solid angle, is I = 2λ4[p2
1 + p2

2]/3c
3.5

1We exclude the self-momentum of moving charges, and consider only the interaction field momentum.
2See also §65 of [4] and sec. 12.6 of [5].
3See also [6].
4See also the Appendix to [8].
5The electric-dipole radiation follows from eq. (67.8) of [4] as IE1 = 2[p̈]2/3c3 = 2λ4[p1 + p2]2/3c3 =

2λ4[p2
1 + p2

2]/3c3, which is the same as the total intensity.
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We can also consider the radiated momentum dPrad/dt =
∫

dΩ(d2Prad/dt dΩ),6 where
d2Prad/dt dΩ = (c r̂/4π) dI/dΩ. Recalling eq. (1), we find that although d2Prad/dt dΩ is
nonzero, the total radiated momentum dPrad/dt is zero.

In a larger historical context, Ampére’s insistence that magnetic forces obey Newton’s
3rd law earned him the sobriquet by Maxwell [10] of the “Newton of electricity”. Ampére’s
authority held up acceptance of the “Lorentz” force law (stated obliquely by Maxwell in 1861
[11]) until efforts by Thomson [13] and Heaviside [15] in 1891 clarified that electromagnetic
fields carry momentum as well as energy (following the first clear statement of the “Lorentz”
force law by Heaviside in 1885 [18]7 ).

In 1864, Maxwell discussed “electromagnetic momentum”, identifying this with Fara-
day’s “electronic state” in sec. 26 of [23], and clarifying in sec. 57 that the “electromagnetic
momentum” of charge q in an external vector potential A is qA(/c) (in the Coulomb gauge,
as favored by Maxwell). This formulation suggests that “electromagnetic momentum” is a
property of the charge, rather than of the electromagnetic field. That Maxwell’s “electro-
magnetic momentum” is equivalent to the electromagnetic-field momentum of Thomson and
Heaviside (the PEM of this note) in quasistatic examples was first demonstrated by Thomson
[24]. See also [25, 26, 27].

Appendix: Onoochin’s Variant
This Appendix is based on analysis by David Griffiths.
Vladimir Onoochin (private communication) has proposed a variant of Narayan’s exam-

ple, again with two time-dependent electric dipoles, for which the current density of the
dipole at the origin can be written as,

Ji(r, t) = Ii dli e
λt δ3(r − ri) x̂i, (2)

with r1 = 0 and r2 = a x̂. The continuity equation then says,

∂ρi

∂t
= −∇ · Ji = −Ii dli e

λt ∂

∂xi
δ3(Ri), (3)

where Ri = r − ri. This integrates to,

ρi(r, t) = −Ii dli
∂

∂xi
δ3(Ri)

∫
eλt dt = −Ii dli

∂

∂xi
δ3(Ri)

[
eλt

λ
+ ki(r)

]
, (4)

for some ki(r) independent of time t. Narayan stipulated that “all sources” (including ρi)
have the time dependence eλt, and hence tacitly assumed that ki = 0,

ρN,i(r, t) = −Ii dli
eλt

λ

∂

∂x
δ3(Ri), (5)

6See, for example, p. 3 of [9].
7In 1846, the first force law between moving charges was given by Weber as F = q1q2(1 − ṙ2/2c2 +

rr̈/c2) r̂/r2, p. 375 of [19], which obeys Newton’s 3rd law. In 1881, Thomson wrote the magnetic force on
charge q as qv × B/2c in eq. (5) of [20]. In 1895, Lorentz wrote “his” force law as F = q(D + v/c × H) in
eq. (V), p. 21, of [21], although he seems mainly to have considered its use in vacuum where D = E and H
= B. See also eq. (23), p. 14, of [22].
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as in eq. (5) of [1]. In contrast, Onoochin chose ki = −1/λ, which leads to,

ρO,i(r, t) = −Ii dli

[
eλt − 1

λ

]
∂

∂xi
δ3(Ri), (6)

and considered the limit λ → 0,

ρO,i(r, t) = −Ii dli t
∂

∂xi

δ3(Ri), JO,i(r, t) = Ii dli δ
3(Ri) x̂i. (7)

In Onoochin’s variant, the electric charge density ρO,i depends linearly on time while the
current density JO,i is independent of time. These conditions were called “semistatic” in
sec. III of [28], for which case the electric and magnetic fields can be computed using the
instantaneous Coulomb and Biot-Savart laws (without retardation).

The electric-dipole moment in Onoochin’s variant is, omitting the subscript O from now
on,

pi(t) =

∫
ρi(r, t) r d3r = −Ii dli t

∫ [
∂

∂xi

δ3(Ri)

]
r d3r

= Ii dli t

∫
δ3(Ri)

∂ r

∂xi
d3r = Ii dli t x̂i. (8)

The electromagnetic fields follow8 as the instantaneous electric-dipole field,

Ei(r, t) =
3(pi · R̂i) R̂i − pi

R3
i

− 4π

3
pi δ

3(Ri), (9)

and the Biot-Savart magnetic field,

Bi(r, t) =

∫
Ji(r

′, t) × R̂′
i

cR
′2
i

d3r′ =
Ii dli x̂i × R̂i

cR2
i

, (10)

where R′ = r′ − ri. There is no radiation associated with Onoochin’s “semistatic” variant.
Turning to the full configuration with two electric dipoles according to Onoochin’s variant,

as in the figure on p. 1 above, with p1 = I1 dl1 t x̂ at r1 = 0 and p2 = I2 dl2 t ŷ at r2 = a x̂,
the total electric force on the two dipoles is zero, since Coulomb’s law obeys Newton’s 3rd

law. However, the total magnetic force is nonzero,

Ftot = F12 + F21 =

∫
J1

c
×B2 dVol +

∫
J2

c
× B1 dVol

=
I1 dl1 x̂

c
×

(
I2 dl2 ŷ × (−x̂)

ca2

)
+

I2 dl2 ŷ

c
×

(
I2 dl1 x̂ × x̂

ca2

)
= −(I1 dl1)(I2 dl2)

a2c2
ŷ. (11)

The interaction field momentum is, recalling that R1 = r and R2 = r − a x̂ ≡ r′,

PEM =

∫
E1 × B2 + E2 × B1

4πc
dVol

=
(I1 dl1)(I2 dl2)t

4πc2

∫ [(
3(x̂ · r̂) r̂ − x̂

r3
− 4π

3
x̂ δ3(r)

)
× ŷ × r′

r′3

+

(
3(ŷ · r̂′) r̂′ − ŷ

r′3
− 4π

3
ŷ δ3(r − a x̂)

)
× x̂ × r

r3

]
dVol. (12)

8These fields also follow from the Appendix of [7], and eqs. (46)-(47) of [29].
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To evaluate the integral, we adopt a spherical coordinate system (r, θ, φ) with the x-axis as
the polar axis, and,

r · x̂ = r cos θ, r · ŷ = r sin θ cos φ, r · ẑ = r sin θ sinφ. (13)

Then, r′ =
√

r2 − 2ar cos θ + a2,

r′ · x̂ = r cos θ − a, r′ · ŷ = r sin θ cosφ, r′ · r = r2 − ar cos θ, (14)

and,

PEM =
(I1 dl1)(I2 dl2) t

4πc2

[
8π

3a2
ŷ +

∫
dVol

[2r cos θ + a(1 − 3 cos2 θ)] ŷ − 3 sin θ cos θ cos φ (r − a x̂))

r3r′3

+

∫
dVol

r sin θ cos φ [3(r2 − ar cos θ)/r′2 − 1] x̂ − 3r sin θ cos φ(r cos θ − a) r/r′2

r3r′3

]

=
(I1 dl1)(I2 dl2) t

4πc2
ŷ

[
4π

3a2
+ 2π

∫ ∞

0

dr

∫ 1

−1

d cos θ
2r cos θ + a(1 − 3 cos2 θ) − (3/2)r sin θ cos θ

r′3

−3π

∫ ∞

0

dr

∫ 1

−1

d cos θ
r sin θ cos θ (r cos θ − a)

r′5

]
. (15)

These integrals are difficult to evaluate, but of possible interest is that the delta function in
the electric field at the center of “point” dipole 1 contributes to the total field momentum,
but the delta function of dipole 2 does not.9

As Onoochin’s variant is “semistatic”, we can also compute the field momentum via
Maxwell’s formulation [27], PEM =

∑
qjA(rj)/c. We see that the (Coulomb-gauge) vector

potential of dipole 1 is the same at the position of both charges of dipole 2, and so does
not contribute to the momentum. The vector potential of dipole 2 along the x-axis is
A2(x) = I2 dl2 ŷ/c |a − x|, so the electromagnetic momentum is,

PEM =
q1dl1

c

dA2(0)

dx
=

(I1 dl1)(I2 dl2) t ŷ

a2c2
, (19)

9For completeness, we consider the field momentum of Onoochin’s dipole 1, for which p1 = I1 dl1 t x̂,
and its electromagnetic fields are, recalling eqs. (9)-(10) with r1 = 0,

E1(r, t) =
3(p1 · r̂) r̂ − p1

r3
− 4π

3
p1 δ3(r), B1(r, t) =

I1 dl1 x̂× r̂
c r2

. (16)

The field momentum of this dipole is, recalling eq. (13),

PEM,1 =
∫

E1 × B1

4πc
dVol =

(I1 dl1)2 t

4πc2

∫
[3(x̂ · r̂) r̂ − x̂] × (x̂× r̂)

r5
dVol

=
(I1 dl1)2 t

4πc2

∫
[3(x̂ · r̂) r̂ − x̂] × (x̂× r̂)

r5
dVol

=
(I1 dl1)2 t

4πc2

∫
3(x̂ · r̂)[x̂− (x̂ · r̂) r̂] − (x̂ · r̂) x̂ + r̂

r5
dVol = 0. (17)

Alternatively, we can compute the field momentum using Maxwell’s form,

PEM,1 =
q1A(x = dl1/2) − q1A(x = −dl1/2)

c
=

(q1 − q1)I1 dl1 x̂
c2 dl1/2

= 0. (18)

Similarly, the field momentum of dipole 2 is zero.
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noting that q1 = I1 t.
Recalling eq. (11), we now have that F12 + F21 + dPEM/dt = 0, as expected. With the

use of Maxwell’s form for electromagnetic momentum, this demonstration for Onoochin’s
variant is much quicker than for Narayan’s version of two time-dependent dipoles.
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