Is There a Mass Shift
of a Permanent Magnetic Moment μ
in an External, Static Magnetic Field B?

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(December 8, 2022)

1 Introduction

The existence of a “mass shift”

$$m = m_0 - \frac{\mu \cdot B_e}{c^2},$$

(1)

(where m is the rest mass of a permanent magnetic moment μ such as that of an electron, proton or neutron, whose rest mass in zero magnetic field is m_0, c is the speed of light in vacuum, and B_e is an external, static magnetic field) has been argued from time to time, perhaps starting with a brief remark by Frenkel in the final paragraph of [1]. See also eq. (18·9) of [2], eq. (8'), p. 1837 of [3], eq. (3.17), p. 1621 of [4], Appendix B of [5], eq. (22), p. 15 of [7], p. 4 of [8], and p. 64 of [9].

Here, we argue that the magnetic-field interaction energy,

$$U_{\mu,B_e} = \mu \cdot B_e,$$

(2)

which is “tied” to the magnetic moment μ, should be “renormalized” into the rest mass of the moment (as is the self magnetic-field energy of the moment), which restores the value of the rest mass m of the moment to m_0.

2 Some Details

An argument, as in sec. 4.3 of [9], is that when, a permanent magnetic moment μ is drawn into an external, static magnetic field B_e with μ parallel to B_e, then the moment takes on positive kinetic energy. To conserve energy, some other energy must have decreased.

The force F on a magnetic moment μ in an external magnetic field B_e can be written as,

$$F = (\mu \cdot \nabla)B_e,$$

(3)

1 For comments by the author on this paper, see [6].
2 This paper notes on p. 8 that the “mass shift” is not predicted in either the classical Foldy-Wouthuysen model or in Dirac’s quantum theory of the electron.
3 A “mass shift” associated with potential energy has been discussed by Brillouin [10, 11].
4 This may explain why the various claims of a “mass shift” (1) have been largely ignored in the literature of classical electromagnetism.
whether the moment is due to equal and opposite magnetic “poles” (Gilbertian [12, 13]), or to electric currents (Ampèrian, [14, 15]). Clarification that permanent magnetism, due to the magnetic moments of electrons, is Ampérian (rather than Gilbertian) came only after detailed studies of positronium \((e^+e^-)\) in the 1940’s [16, 17].

For a static, external magnetic field, \(\nabla \times \mathbf{B}_e = 4\pi \mathbf{J}_e/c\), where \(\mathbf{J}_e\) is the source-current density, and we use Gaussian units in this note. At the location of the magnetic moment, \(\nabla \times \mathbf{B}_e = 0\), so eq. (3) can be rewritten as,\(^5\)
\[\mathbf{F} = \nabla (\mu \cdot \mathbf{B}_e) = -\nabla (-\mu \cdot \mathbf{B}_e) = -\nabla U_{\text{potential}},\]
where \(U_{\text{potential}} = -\mu \cdot \mathbf{B}_e\) can be called the magnetic potential energy of the system.\(^8\)

We suppose the system starts “at rest” with moment \(\mu\) far from the sources of the external magnetic field \(\mathbf{B}_e\), such that the initial, total energy of the system is,

\[U_0 = U_{\mu,\text{internal},0} + U_{\mathbf{B}_e,\text{internal},0},\]
where we suppose that the energies of the self magnetic fields of \(\mu\) and \(\mathbf{B}_e\) are part of their internal energies.

There is no classical model of a permanent magnetic moment as due to electric currents, although we say that permanent moment is Ampèrian, as noted, for example, in [16, 17]. We are left with the view that the internal energy of a permanent magnetic moment is just its rest energy \(mc^2\), where \(m\) is the rest mass of the moment.

The final energy \(U_f\) of the system includes the kinetic energy of the moment \(\mu\) and of the sources of \(\mathbf{B}_e\), although we will neglect the latter, and suppose that the external magnetic field remains at rest, and is independent of time (static).

The final kinetic energy of the magnetic moment is related by,

\[\text{KE}_{\mu,f} = \int_0^f \mathbf{F} \cdot d\mathbf{x} = \int_0^f \nabla (\mu \cdot \mathbf{B}_e) \cdot d\mathbf{x} = \mu \cdot \mathbf{B}_e.\]
Conservation of energy can then be written as,

\[U_0 = U_f = \text{KE}_{\mu,f} + U_{\mu,\text{internal},f} + U_{\mathbf{B}_e,\text{internal},f} + U_{\mu,\mathbf{B}_e},\]
where \(U_{\mu,\mathbf{B}_e}\) is the magnetic-field interaction energy,

\[U_{\mu,\mathbf{B}_e} = \mu \cdot \mathbf{B}_e,\]
as computed in sec. 4.3 of [9], and in the Appendix below by another method.

Combining eqs. (5)-(8), we have,

\[U_{\mu,\text{internal},f} + U_{\mathbf{B}_e,\text{internal},f} = U_{\mu,\text{internal},0} + U_{\mathbf{B}_e,\text{internal},0} - \mu \cdot \mathbf{B}_e - U_{\mu,\mathbf{B}_e}.\]
\(^5\)Equation (4) also holds for a magnetic moment with steady currents held constant by a “battery”.
\(^6\)For a different derivation of eq. (4), see Sec. 2.18 of [18].
\(^7\)The force (4) is called the Stern-Gerlach force in the German literature.
\(^8\)Maxwell wrote the potential energy of a magnetization density \(\mathbf{M}\) in an external magnetic field as \(U_{\text{potential}} = -\int \mathbf{M} \cdot \mathbf{H}_e \, d\text{Vol}\) in eq. (6), Art. 389 of [19], based on a model of Gilbertian magnetic moments.
If the external magnetic field B_e is due to currents driven by “batteries”, it could be that
the internal energy of the permanent moment μ does not change as the moment enters the
external field, while the internal energy of the “batteries” does change. Hence, it is more
pertinent to consider the case of two permanent magnetic moments.

The discussion above assumes that the “external” magnetic field B_e is static, so for a
system of two permanent magnetic moments μ_1 and μ_2 we presume that moment μ_2 is held
at rest by some force, which does no work. Then, eq. (9) becomes (with $\mu \rightarrow \mu_1$),

$$U_{\mu_1, \text{internal}, f} + U_{\mu_2, \text{internal}, f} = U_{\mu_1, \text{internal}, 0} + U_{\mu_2, \text{internal}, 0} - \mu_1 \cdot B_2 - U_{\mu_1, \mu_2},$$

(10)

where the final magnetic-field interaction energy is,

$$U_{\mu_1, \mu_2} = \mu_1 \cdot B_2 = \mu_2 \cdot B_1 = \frac{3(\mu_1 \cdot \hat{r})(\mu_2 \cdot \hat{r}) - \mu_1 \cdot \mu_2}{r^3},$$

(11)

with r as the position vector from moment 1 to moment 2. Then, eq. (10) takes the form,

$$m_1 c^2 + m_2 c^2 = m_{0,1} c^2 - \mu_1 \cdot B_2 + m_{0,2} c^2 - \mu_2 \cdot B_1,$$

(12)

which suggests that the rest mass m of a permanent magnetic moment μ in an external,
static magnetic field B_e experiences the “mass shift” (1).

3 Comments

3.1 Can the Rest Mass Be Negative?

Since an electron has a permanent magnetic moment, eq. (1) should apply to it. If so, the
rest mass of an electron would be negative if its magnetic moment, of magnitude $e\hbar/2m_0c$,
is parallel to a magnetic field that exceeds (twice) the so-called QED critical field $B_{\text{critical}} = m_0^2 c^3/e\hbar = 4.4 \times 10^{13}$ gauss. Such fields exist at the surface of magnetars [20].

On p. 15 of [7] it was argued that when the rest mass of an electron is negative, the
direction of the cyclotron motion of the electron about the magnetic field vector is reversed
in a very strong field, compared to that in lower magnetic fields.

The “mass shift” (1) of an electron in a laboratory magnetic field of 1 T is less than a
part per billion, so would have little effect on “everyday” electrodynamics.

3.2 Does the “Mass Shift” Affect the Dirac Equation?

The view of Wald (private communication) is that the “mass shift”, eq. (1), does not affect
the Dirac equation, where the mass in that equation is the rest mass m_0 in zero magnetic
field, even when the (spin-1/2) Dirac particle is in an external, static magnetic field. In this
view, the permanent magnetic moment $e\hbar/2m_0c$ of an electron, is not affected by the “mass shift” (1).

\footnote{An electron in an electromagnetic plane wave experiences a different kind of mass shift, first noted by
Volkov [21, 22, 23], that $m = m_0 \sqrt{1 + \eta^2} \geq m_0$, where $\eta = eE/m_0\omega c$ for an electron in a circularly polarized}

3
The “mass shift” (1), if it existed, would affect the kinetic energy, momentum, and orbital angular momentum of an electron, and hence the energy levels of an atom, and the Landau levels of an electron,\(^1\) in an external, static magnetic field should be shifted by a part per billion in a static field of a few Tesla (which is not predicted in standard quantum theory).

3.3 Renormalization of the Mass Shift

Since the magnetic-field interaction energy \(\mu \cdot B_e\) is “tied” to the electron, the gravitational interaction of an electron in a magnetic field includes this mass/energy, and it seems that the “gravitational mass” of an electron (for low velocities \([24]\)) is \(m + \mu \cdot B_e/c^2 = m_0\). That is, the gravitational interaction is not sensitive to the “mass shift” (1).

Then, if we “renormalize” the magnetic-field interaction energy \(\mu \cdot B_e\) into the effective rest energy of an electron, such that the effective mass of the electron in an external magnetic field is just its rest mass \(m_0\) in zero magnetic field, the “mass shift” (1) plays no dynamical role in electromagnetic interactions (or the gravitational interaction). It may remain comforting to imagine the “mass shift” (1) as an explanation for where the magnetic-field interaction energy (24) comes from, but it has no direct physical consequence.

However, this leaves the consideration of the energetics of a permanent magnetic moment in an external, static magnetic field somewhat ambiguous. As noted in sec. 2 above, if a permanent magnetic moment \(\mu\) is drawn into an external, static magnetic field \(B_e\) with \(\mu\) parallel to \(B_e\), then the moment takes on positive kinetic energy. To conserve energy, some other energy must have decreased. The magnetic-field interaction energy \(\mu \cdot B_e\) has increased, while the magnetic potential energy \(-\mu \cdot B_e\) has decreased. As noted in secs. 4.3 and 5.1 of [9], the rate of exchange of energy between electric current density \(J\) and the electromagnetic fields is \(J \cdot E\), with the implication that the magnetic field \(B\) does not participate in the exchange of energy. Hence, the magnetic-field interaction energy \(\mu \cdot B_e\) is of little relevance here, in contrast to the magnetic potential energy \(-\mu \cdot B_e\). We can take the view that the effective magnetic-field interaction energy in work-energy considerations is \(-\mu \cdot B_e\) rather than \(\mu \cdot B_e\). This notion is presented in most textbooks, without discussion of the subtleties considered here.

\(^{10}\)A semiclassical analysis of the lowest Landau level of an electron of rest mass \(m\) and velocity \(v\) in a circular orbit of radius \(r\) in magnetic field \(B\) is that its angular momentum is \(\gamma mv = \hbar\), where \(m\) is the rest mass of the electron in the \(B\) field, not necessarily the electron rest mass \(m_0\) in zero magnetic field, and \(\gamma = 1/\sqrt{1 - v^2/c^2}\). Then, Newton’s 2\(^{nd}\) law tells us that \(\gamma mv^2/r = evB/c\) for an orbit in a plane perpendicular to \(B\). We now have that \(\gamma mv = eBr/c\), and hence that \(r^2 = hc/eB\), independent of the value of \(m\). For \(B = B_{\text{critical}} = m_0^2c^3/eh\), the radius of the orbit is \(r = h/m_0c\), the Compton wavelength of an electron of rest mass \(m_0\). For \(B > B_{\text{critical}}\), where the rest mass \(m\) becomes negative according to eq. (1), there is no classical description of the electron.
3.3.1 $\mathbf{J} \cdot \mathbf{E} = 0$ for Two Parallel, Permanent Magnetic Moments

We consider further the case of two permanent magnetic moments, mentioned at the end of sec. 2 above, now assuming that they are electrically neutral (for example, neutrons) and that their magnetic moments are parallel, and parallel to their line of centers. Again, moment 2 is somehow held at rest while moment 1 moves towards it. In this case, the magnetic-field interaction energy (11) simplifies to $U_{\mu_1, \mu_2} = 2\mu_1\mu_2/r^3$.

The magnetic moments have no intrinsic electric-dipole moments when at rest, but in general a moving magnetic moment appears to have an electric-dipole moment $p = v/c \times \mu$ for low velocity v, while the magnetic moment remains μ in the low-velocity limit.\(^{11}\) For the present example, where μ_1 and v are parallel, the apparent electric-dipole moment of the moving moment μ_1 is zero, and there is no electric field due to this effect.

We can also consider the radiation electric field of the accelerating magnetic moment μ_1, which is given by eq. (71.4) of [30] as,

$$E_{1,\text{rad}} = \frac{\hat{r} \times \ddot{\mu}_1}{6c^3r}. \quad (13)$$

This field vanishes at moment μ_2 as the “acceleration” $\ddot{\mu}_1$ is along the line of centers of the moments (which are parallel to that direction).

Hence,

$$\mathbf{J} \cdot \mathbf{E} = 0,$$

noting that $\mathbf{J}_1 \cdot \mathbf{E}_2 = 0$ since $\mathbf{E}_2 = 0$ everywhere. Furthermore, the Poynting vector $S = (c/4\pi)E_{1,\text{rad}} \times B_2$ is of order $1/c^2$.

The general argument of Poynting [31] is that,

$$\frac{\partial u_{\text{EM}}}{\partial t} + \nabla \cdot S = -\mathbf{J} \cdot \mathbf{E}, \quad (15)$$

where $u_{\text{EM}} = (E^2 + B^2)/8\pi$ is the density of energy in the electromagnetic field. In the present example, we “renormalize” the self-field energies of the moments in to their rest masses, leaving the interaction energy density as,

$$u_{\text{EM, int}} = \frac{B_1 \cdot B_2}{4\pi} = \frac{3(\mu_1 \cdot \hat{r})(\mu_2 \cdot \hat{r}) + \mu_1 \cdot \mu_2}{r^6}, \quad (16)$$

which increases as the moment 1 approaches moment 2. From eqs. (14) and (15) we have that

$$\frac{\partial u_{\text{EM, int}}}{\partial t} = -\nabla \cdot S, \quad (17)$$

which is unreasonable as S is of order $1/c^2$ but $\partial u_{\text{EM, int}}/\partial t$ is not.\(^{12}\)

This discrepancy is less worrisome if we “renormalize” the magnetic-field interaction energy (and energy density) into the rest energy/mass of the moments.

\(^{11}\)The special relativistic transformation of electric and magnetic dipole moments was first given by Lorentz (1910) [28]. Some elaboration of this theme is given in [29].

\(^{12}\)If we consider that the magnetic moment of a neutron is of order $\hbar/m_0 c$, then $\mu \propto 1/c$ and $B_\mu \propto 1/c$, such that $S \propto 1/c^4$, while $u_{\text{EM, int}} \propto 1/c^2$, and again eq. (17) involves a mismatch of a factor of $1/c^2$.

5
3.4 Magnetic Moment Maintained by a “Battery”

The is no “mass shift” of the form (1) for a magnetic moment based on (resistive) electrical currents driven by a “battery”, when in an external, static magnetic field, as the preceding arguments apply here as well. However, Joule heating of the resistive medium depletes the stored energy of the “battery”, which does experiences a tiny reduction of mass as a result.

For example, a 1.5-V AA battery has a mass of about 20 grams, and stored electrical energy of about 2 Ah \(\approx 10^4 \text{ joule} = 10^{11} \text{ erg} \). The mass corresponding to this stored energy is \(10^{11}/c^2 \approx 10^{-10} \text{ g} \), leading to a downward “mass shift” of about 5 parts per trillion of the mass of the battery as it is depleted.

Appendix: The Magnetic-Field Interaction Energy

In general, the magnetic field energy can be computed as,

\[
U_B = \int \frac{B^2}{8\pi} d\text{Vol}. \tag{18}
\]

In the present example, \(B = B_\mu + B_e \), so the magnetic-field interaction energy is,

\[
U_{\mu,B_e} = \int \frac{B_\mu \cdot B_e}{4\pi} d\text{Vol}. \tag{19}
\]

For static magnetic \(B_e \) this energy can be rewritten as,

\[
U_{\mu,B_e} = \int \frac{B_e \cdot \nabla \times A_\mu}{4\pi} d\text{Vol} = \int \frac{A_\mu \cdot \nabla \times B_e}{4\pi} d\text{Vol} + \int \frac{\nabla \cdot (A_\mu \times B_e)}{4\pi} d\text{Vol} \\
= \int \frac{J_e \cdot A_\mu}{c} d\text{Vol}, \tag{20}
\]

where \(A_\mu \) is the vector potential for moment \(\mu \), \(J_e \) is the electric current density that is the source of \(B_e \), and we suppose that \(A \) and \(J \) fall off sufficiently quickly at large distances so that \(\int \nabla \cdot (A_\mu \times B_e) d\text{Vol} = \oint A_\mu \times B_e \cdot d\text{Area} \) is negligible.

The vector potential of a magnetic moment \(\mu \) was deduced by Thomson (Lord Kelvin) in 1846 [25] as,\(^{13}\)

\[
A_\mu = \frac{\mu \times \hat{r}}{r^2}. \tag{21}
\]

The external magnetic field \(B_e \) is nearly uniform in the region of the (small) magnetic moment \(\mu \) so for purposes of computation of the interaction field energy, it suffices to consider a magnetic field that is uniform with a sphere of radius \(a \) centered on \(\mu \). As in Prob. 12(a) of [27], this uniform magnetic field could be due to a uniform magnetization density \(M = 3B_e/8\pi \), which is equivalent to a surface current density on the sphere of radius \(a \),

\[
K_e = cM \sin \theta \hat{\phi} = \frac{3cB}{8\pi} \sin \theta \hat{\phi}, \tag{22}
\]

\(^{13}\)This was the first published use of a vector potential. Equation (21) also follows from a multipole expansion of the vector potential, as on p. 84 of [26].
in a spherical coordinate system \((r, \phi, \theta)\) with its z-axis along \(B_e = B_e \hat{z}\). The interaction field energy is then,

\[
U_{\mu, B_e} = \int \frac{J_\phi \cdot A_\mu}{c} d\text{Vol} = \int \frac{K_\phi \cdot A_\mu}{c} d\text{Area} = \frac{a^2}{c} \int_0^{2\pi} d\phi \int_{-1}^1 d\cos \theta \frac{3cB_e}{8\pi} \sin \theta \hat{\phi} \cdot \frac{\mu \times \hat{r}}{a^2}
\]

\[
= \frac{3B_e}{8\pi} \int_0^{2\pi} d\phi \int_{-1}^1 \sin \theta \cos \theta \mu \cdot \hat{r} \times \hat{\phi} = -\frac{3B_e}{8\pi} \int_0^{2\pi} d\phi \int_{-1}^1 \sin \theta \cos \theta \mu \cdot \hat{\theta} \tag{23}
\]

We have that \(-\hat{\theta} = -\cos \theta \cos \phi \hat{x} - \cos \theta \sin \phi \hat{y} + \sin \theta \hat{z}\), which leads to,\(^{14}\)

\[
U_{\mu, B_e} = \frac{3\mu \cdot B_e \hat{z}}{8\pi} \int_0^{2\pi} d\phi \int_{-1}^1 \sin^2 \theta \cos \theta = \mu \cdot B_e, \tag{24}
\]

independent of the radius \(a\) of the sphere within which the external field \(B_e\) is uniform.\(^{15}\)

Of course, \(a\) must be large enough to contain the magnetic moment \(\mu\), so that the external field is uniform over the entire moment.

ded to Sebastian Meuren, Antonino Di Piazza and Robert Wald for e-discussions of this topic.

References

\(^{14}\)Swapping subscripts \(\mu\) and \(e\) in eq. (20) leads to the alternative form, \(U_{\mu, B_e} = \int \frac{J_\mu \cdot A_e}{c} d\text{Vol} / c\). A derivation of \(U_{\mu, B_e} = \mu \cdot B_e\) via this form is given in Sec. 4.3 of [9].

\(^{15}\)A naïve inference is that the interaction field energy (24) is located within the magnetic moment \(\mu\) if the latter is spherical, and occupies the same volume as does the internal energy of the moment. However, we should recall that there is nonzero magnetic field outside the sphere, corresponding to a magnetic dipole of moment \(4\pi a^3 M/3 = a^3 B_e / 2\), and this field contributes to the interaction energy (19). The portions of the interaction energy, of density \(B_\mu \cdot B_e / 4\pi\), inside and outside the sphere of radius \(a\) varies with the radius, but the total interaction energy is independent of \(a\).

