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1 Problem

Deduce the electromagnetic radiation pattern of a small (electrically neutral) loop of steady
current I in the x-y plane, with magnetic moment m = IA ẑ/c (in Gaussian units, A is the
area of the loop and c is the speed of light in vacuum), supposing the center of the loop
oscillates according to x = x0 cosωt, where the peak velocity v = x0ω is much less than c.

Discuss also the case of an infinite solenoid, whose axis is parallel to the z-axis, with
magnetic moment m per unit length, and a point on the axis of the solenoid oscillates as
above.

This problem was inspired by a discussion of scattering off a cosmic string [1], and related
consideration of the radiation of scalar particles by a transversely oscillating infinite solenoid
(a prototype of a cosmic string) [2].

2 Solution

2.1 Current Loop

In the first approximation, the magnetic moment m of the oscillating current loop is constant
in time, so there is no magnetic dipole radiation. But, the oscillating magnetic moment
has a time-dependent quadrupole moment, whose radiation fields depend on the third time
derivative, which varies as ω3.1

Also, a moving magnetic moment, m when at rest, takes on a time-dependent electric-
dipole moment p according to,2

p ≈ v

c
× m, (1)

where the approximation holds for v � c. The radiation fields of a time-dependent electric
dipole depend on its second time derivative, which also varies as ω3 in the present example.

2.1.1 Electric-Dipole Radiation

The velocity of the center of the current loop (magnetic moment m = m ẑ) is v = −Aω sin ωt x̂,
so its electric-dipole moment (1) is,

p ≈ Aωm sinωt ŷ

c
, p̈ ≈ −Aω3m sinωt ŷ

c
. (2)

1See, for example, §71 of [3].
2See, for example, [4].
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For an observer at (x, y, z), where n̂ = (x, y, z)/r, the radiation fields of this oscillating
electric dipole are, with the time derivative evaluated at the retarded time t−r/c = t−kr/ω,

EE1 =
(p̈× n̂) × n̂

c2r
= −Aω3m sin(kr − ω)

c3r3
(xy,−x2 − z2, yz), (3)

BE1 =
p̈× n̂

c2r2
= −Aω3m sin(kr − ωt)

c3r2
(z, 0, x), (4)

for which B = E. The time-average pattern for the electric-dipole part of the radiation can
be computed as,

d 〈UE1〉
dΩ

=
c

4π

〈
B2

〉
r2 =

A2ω6m2

8πc5

x2 + z2

r2
=

A2ω6m2

8πc5

(
1 − y2

r2

)
=

A2ω6m2

8πc5

(
1 − sin2 θ sin2 φ

)
, (5)

where the last form is for spherical coordinates (r, θ, φ).

2.1.2 Magnetic-Quadrupole Radiation

The forms of radiation fields of an oscillating magnetic quadrupole can be obtained from
those of an electric quadrupole, given in §71 of [3], via the duality transformation qe → qm,
Ee → Bm, Be → −Em,3 which imply,

EM2 =
1

6c3r
n̂×

...

Q BM2 =
1

6c3r
n̂× (n̂×

...

Q), (6)

where the magnetic quadrupole vector Q is related to the magnetic quadrupole tensor Q by,

Qij =
∑

qm(3xixj − δijr
2), Q = Q · n̂, (7)

and the qm are the effective magnetic charges of the current distribution. In the present
example of a small current loop in the x-y plane, centered at (xm, 0, 0), with magnetic
moment m = m ẑ, we can take the magnetic charges to be ±qm, located at (xm, 0,±d/2)
for fixed d, where m = qmd. Then, r2 = x2

m + d2/4 for both magnetic charges such that the
only nonzero elements of the quadrupole tensor are Qxz = Qzx = 6qmxmd = 6mxm. For an
observer at (x, y, z), we have that n̂ = (x, y, z)/r, and,

Q =
6mxm

r
(z, 0, x), n̂ ×Q =

6mxm

r2
(xy, z2 − x2, yz), (8)

n̂ × (n̂ ×Q) =
6mxm

r3
(x2z + y2z − z3, 0, xz2 − xy2 − x3). (9)

The electric field (6) of the magnetic-quadrupole radiation is, with xm = A cos ωt,

EM2 = −Aω3m sin(kr − ωt)

c3r3
(xy, z2 − x2, yz). (10)

3See, for example, Appendix D.4 of [5].
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2.1.3 Total Radiation

The electric field (10) is in phase with the electric-dipole field (3), so we should consider the
total radiation electric field,

E = EE1 + EM2 = −2Aω3m sin(kr − ωt)

c3r3
(xy,−x2, yz). (11)

The time-average pattern for the total radiation can be computed as, recalling eq. (66.6) of
[3],

d 〈U〉
dΩ

=
c

4π

〈
E2

〉
r2 =

A2ω6m2

2πc5

x2y2 + x4 + y2z2

r4

=
A2ω6m2

2πc5
sin2 θ(sin2 θ cos2 φ + cos2 θ sin2 φ). (12)

The radiated energy comes from the force that drives the motion of the current loop.
In the classical view, there exists a radiation-reaction force on the current loop, equal and
opposite to the drive force, that depends on the time derivative of electric charges in the
loop. While the oscillating loop is electrically neutral, its “conduction” charges have different
acceleration than its the “lattice” charges, so the radiation-reaction force is nonzero, as
required.

We note that in cylindrical coordinates (ρ, φ, z), where cosφ = x/ρ and sinφ = y/ρ, the
electric field (11) can be written as, with r2 = x2 + y2 + z2 = ρ2 + z2,

Eρ = Ex cos φ + Ey sinφ, Eφ = −Ex sinφ + Ey cos φ, (13)

E(ρ, φ, z) = −2Aω3m sin(kr − ωt)

c3r3
(0, ρ2 cosφ, ρz sinφ). (14)

The radiation magnetic field in cylindrical coordinates is, with n̂ = (ρ ρ̂ + z ẑ)/r,

B(ρ, φ, z) = n̂× E = −2Aω3m sin(kr − ωt)

c3r4
(ρ2z, ρ2z sinφ, ρ3 cos φ). (15)

2.2 Infinite Solenoid

We now consider an infinite solenoid, along the z-axis. If this is based on currents in a
conductor, that conductor “shields” the electromagnetic fields inside and outside the solenoid
from one another. For simplicity, we instead suppose that the infinite solenoid is made of
a nonconducting, “permanent” magnetic material, such that we can avoid considerations of
“shielding”.

We also suppose that the infinite solenoid has a very small cross-sectional area, and has
magnetic moment m = m ẑ per unit length. That is, our infinite solenoid is a kind of “cosmic
string”, particularly as imagined by Dirac [6].

The electric field at (ρ, φ, 0) can be computed (in cylindrical coordinates) from the field
(14) as, with r2 = ρ2 + z2,

E(ρ, φ, 0) = −
∫ ∞

−∞
dz

2Aω3m sin(kr − ωt)

c3

(0, ρ2 cos φ, ρz sinφ)

r3

= −2Aω3mρ2 cosφ

c3

∫ ∞

−∞
dz

(0, sin(kr − ωt), 0)

r3
, (16)
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which field is purely azimuthal. The integral in eq. (16) has dimensions of length−2 and
presumably goes as 1/kρ3 times some Bessel function of argument kρ − ωt, so the field falls
off as 1/kρ. If so, the dependence of the field on angular frequency ω = kc would be reduced
from ω3 to ω2.

By a similar argument for the magnetic field as the z-integral of eq. (15), it has only a
z-component, equal in magnitude to the φ-component of the electric field (16).

The radiation pattern depends on the square of the radiation electric field, so its angular
distribution is just cos2 φ.

While an infinite solenoid at rest has “zero” magnetic (and electric) field outside it, we
see that any transverse motion of the solenoid leads to (small) E and B fields everywhere in
its exterior.
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