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From The Editor'®s As the official organ of our group we
Desikc. - - feel it is our responsibility to report on
Atari-relative matters. That is why we
This month's word is CAVEAT. . Fron the Published the letter originally. He had
Latin: let him beware; a warning. In the received many reports of Aastra drives
January issue we published a letter from failing. Me are-sure that Mr. Featherston
JACE member MNillian Hough concerning his tcorrectly) feuls it his right and
unfortunate luch With two Astra disk responsibility to protect the g00d nane of
drives. He have since received a pachet of astra systems, Inc. Ngain, in fairness, it
materials from Astra Systems, Inc. letting seens that Astra is doing everything they
us know of their distress at our printing can to rectify these past problems and are
of “Mr. Hough's nendacious assertions." now producing an effective and dependable
The letter, from Aastra plant manager Drew product. He would invite you to look
Featherston, takes us to task for through the dossier of naterials ",

Publishing such a "libelous and defamatory Featherston sent and inform ygurself, See
letter” and chastises us for not verifying any club officer for a copy of these
the facts and allowing Astra to present naterials.
their case. In the future we certainly will mnake
In the second case we are wost guilty. it a point to continué to print both
In the fairness of journalism it was, positive and negative criticism of products
indeed, a professional discourtesy not to which our wembership might come in contact
invite Aastra t0 counter |, e Hough's with. Me will also nake it a point to
charges. For that we apologize. Being a invite differing and OPPOSing views, at
small publication intended for distribution the risk of appearing sloppily sentimental,

t0 our wewnbership and sowe other user we think that is the American way.
groups we never have been so egocentric to Briefly, another caveat should be
thinh of ourselves in the same league as observed as you peruse this colorful issue.
ANTIC or ANaLOGE wagazines. . It is april, after all, and those who have
Featherston, however, points out that these been among us more than 3 year know the
publications refused to print Mr. Hough's danger that lurks within.
“malicious nissive" bec ause they
“pecognized their legal obligations.™
A review of the materials from astra
nakes it apparent that there was y
considerable  wix-up in communications 2 fa
between Astra and Mr. Hough. astra 7
apparently tried to set things straight but Frank Pazel
the corporate—customer relationship had too Editor—in—Chief, JACG Wewsletter
far soured. In all fairness, it further
seens that Aastra has cured the basic
problen of excessive overheating. Copies PPPIXNSITDE 4ddd
of letters from satisfied custowers 2 ORTIICLESS
indicate an excellent relationship with
astra. Table of Contents — Page 3

In the final analysis it seens what we
have here is the sort of unfortunate

situation described by Tom Peters in his MaRIKK YOLIR CalLENDARS & 8
popular book, “In Search oOf Excellence”, JACE Meeting Schedule

wherein the true human sensitivity of a

corporation can get lost in adwinistrative ; May 11, 1985

procedures. This is not to say either side June 8, 1985

in this dispute was/is right or wrong. The July 13, 1985

Perceptions are what count. august 10, 1385




LESASF STORM
by Kirk McDonald - JACG

An exciting challenge for the computer
graphics enthusiast is the creation of
images which are "life-like." The
difficulty is that a computer is most easily
programmed to produce pictures which are
either highly ordered, or completely random.
But life is found in a fertile realm
somewhere between the crystals and the
clouds, and not necessarily in computer
code.

One approach to life-like imagery is
the use of a graphics input device such as
the Koala Pad. In this case the computer
merely digitzes a picture created by a human
being, and plays almost no direct role in
the creative process.

A more ambitious goal is a computer
program which draws life-like pictures on
the basis of a very small number of initial
parameters specified by the wuser. An
important step in this direction has been
made by Mehrdad Shahshahani of Boeing
Aerospace Co.

{A brief report on his work appeared on
page 494 of the a@ugust 3, 1984 issue of
Science magazine. A highly mathematical
discussion of the basis of the algorithm has
been given by Persi Diaconis and Shahshahani
in Technical Report No. 228 of the Stanford
University Department of Statistics, dated
November 1984.1

You can explore the strange and
wonderful insight of Shahshahani on your
Atari 866 or 868XL computer with the aid of
the program LEAF STORM. {(The name is
borrowed from a short story by Garcia
Marquez.) This is available on a JACG :

library diskette in two forms. The source

code is in file LEAF.ACT and is written in

the Action! language. The binary file .
LEAF.COM can be run directly from DOS if you  °.
do not have an Action! cartridge. The file
LEAF.DOC is a text file which contains some
instructions on running the program if you

do not find it self-explanatory. This file

also contains a short description of the
mathematics of the program.

To generate a picture you must provide
the computer wi th a list of
stransformations.” Each transformation s
just a set of four numbers. If you specify
only one transformation the computer will
plot exaclty one dot. But already if you
enter two transformations (8 numbers) the
computer can draw quite interesting shapes.
Figure 1 was produced by entering
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To my forgiving eye this 1looks something
like the outline of a clump of trees, or a
¢ loud-bank. of course, we must heed
Shakespeare’s remark that a cloud may appear
simul taneously as a camel, a weasel and a
whale to the impressionable.
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Figure 2 was drawn with
transformations
58 30 8 -39

the




' p—

Figure 3 is an example of the eponymous ) The LEAF STORM algorithm may gi?e us a
leaf. Its transformations are glimpse as to how comp!ex forms of life can
56 -43 -31 0 be compactly encoded in DNA molecules. As

S8 46 -29 @ . the pictures are drawn by the computer one

SQ -286 -5 @ gets the feeling of witnessing an evolution

sg 22 -5 0 from a primitive form to a more and more

refined structure. Fur thermore, a smatll

i "mutation®” of the transformation parameters

Figure 4 was generated by Shahshahani leads to slightly altered images. However,

and is called a poplar treee by him. the alteration is not localized to a s=mall

region of the image, but is distributed over
the whole in a complex way. This simulates
the manner in which wvarious members of the
same species have a common ocverall form but
differ in detail.

The mutation of the transformations can
be readily applied to generate computer
animation. Figure & shows a somewhat
stylized man (Kachina dol1?) taking a step.
The starting set of transformations is

30 18 468 0
38 -186 46 0

Figure 4

56 30 -10 8

These figures do not show a curious
aspect of their generation, which would be
apparent if you watch them being drawn on
your TV screen. The computer very quickly
draws a rough outline of the image, and then
returns to fill in with greater detail. 1€
the TV screen had infinite resolution, and
the computer was left the draw forever, it
would add ever finer shading to the picture,
without altering the overall form to any
great extent. This behavior is closely
related to fractals, which are Known to be
associated with interesting graphics. To my
taste, most fractal pictures are rather
crystalline, while Shahshahani has succeeded
in combining crystals and clouds in subtle Figure &
proportion so as to simutate life.

The 2nd step was obtained by changing the

two values of 38 to 31 and 29, while for the
3rd step the values were 32 and 28.

Figure S illustrates the fractail
aspects of the LEAF STORM. The shrimp-1ike
image is generated by the 2 transformations

S5 186 34 34 Perhaps Walt Disney Studios is in no

S5S -34 -21 -33 immediate danger of being replaced by an
Atari 808 computer. But when the 528ST
becomes available.....
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overlying the gently inclined subducting
ocean crust. A section of ocean crust
apparently broke off and underlies the
accreted terranes. Prominent reflectors
in recently acquired data coincide with
the upper-lower crust boundary, the bot-
tom of the detached oceanic plate, and

either the continental Moho or the top of
the subducting ocean plate.

While the USGS and non-U.S. pro-
grams emphasize the use of multiple
techniques at the same sites, COCORP
speakers placed a new emphasis on the
reconnaissance nature of most of their

program. Refraction will help, but the
ultimate test of seismic methods—deep
drilling—is only now being proposed. A
10-kilometer hole in the southern Appa-
lachians (Science, 29 June, p. 1418)
would help determine what some reflec-
tors really are.—RICHARD A. KERR

Esoteric Math Has Practical Result

A new method of computer graphics relies on math
results that seemed so abstruse that they were never published

The problem with natural objects is
that they are so irregular. When pro-
grammers try to tell a computer how to
draw a cloud or a leaf or a forest, they
run into difficulties. If they attempt to
specify each and every detail, they will
come up against a monumental comput-
ing task. It can take thousands or mil-
lions of bits of stored data to draw a
realistic scene and computers quickly
run out of space. It also takes computers
a long time—18 hours in some cases—to
put all this stored data together to make a
picture. If programmers try to provide
general rules for drawing scenery, the
computer pictures will look a little too
smooth and regular. It is even more
difficult to solve what computer scien-
tists call the encoding problem. Take a
scene, digitize it, and compress the infor-
mation substantially so it can be easily
stored. Then ask the computer to re-
create that exact scene any time you
want to see it.

But Mehrdad Shahshahani, a mathe-
matician at Boeing Aerospace in Seattle
has an extremely promising approach to
solving both of these problems. He has
found a way to make computer pictures
of natural objects and to encode pictures
of scenery with very little effort. He can
generate a realistic picture of a leaf, for
example, with only 21 numbers and three
simple equations. Boeing Aerospace
wants to use Shahshahani’s results in its
flight simulators, which are computer-
ized systems used to train pilots by giv-
ing them the exact sensations of flying,
complete to the scenery outside the win-
dow, without ever leaving the ground.

Shahshahani’s work relies on some
very esoteric abstract mathematics,
which seems so unrelated to the real
world that when Persi Diaconis, a statis-
tician at Stanford University, studied
this math 10 years ago, he decided not
even to publish his results. But the math-
ematics results turned out to be just what

494

is needed to determine which numbers
and simple equations will make which
pictures of natural objects. The story of
how this mathematics came to light is the
sort of story that is dearest to mathemati-
cians’ hearts. It is a story of mathematics
pursued for its own ends that eventually
finds an unexpected and significant use.

In 1974, as a graduate student in the
statistics department of Harvard Univer-
sity, Diaconis at first had difficulty find-
ing a research problem that interested
him. Then, by chance, he came upon the
‘““first digit problem,”’ a problem first
described around the turn of the century
by Simon Newcomb, an astronomer.
Newcomb was led to a curious result
about the distribution of the first digits of
numbers when he noticed that the begin-
ning pages of books of logarithms were

_the most worn, indicating that people

were looking up more logarithms of num-
bers starting with 1 than any other num-
ber.

If you look at the lead digit in any
source of numbers, such as the pages of
Science or the numbers in the almanac,
you might expect that the number 1
would turn up about one-ninth of the
time. After all, there are nine possible
first digits and there is no reason to
believe that any one digit would be fa-
vored over any other. But, surprisingly,
the number 1 is the first digit about three
times out of ten because the numbers
that begin with 1 are irregularly spread
among all the numbers. So, for example,
one-ninth of the numbers from 1 to 9
begin with 1. One-half of the numbers
from 1 to 20 begin with 1. One-ninth of
the numbers from 1 to 100 start with 1.
One-half of the numbers from 1 to 200
start with 1. As you look at larger and
larger sets of numbers, the proportion of
numbers in the sets with lead digits that
are 1 oscillates between one-half and
one-ninth. Diaconis asked whether there
was some other natural way to take an

average so that the average number of
lead digits that are 1 will settle down
rather than oscillate.

A way to do this, Diaconis found, is to
use the Riemann zeta function, which
has been the object of intense study for
the past century because if more were
known about it, more would be known
about where prime numbers lie. The zeta
function is an infinite sum, and Diaconis
found that if he used the terms of that
sum as weighting factors, he could get a
way of averaging that would avoid the
oscillations in the first digit problem. At
the same time, this averaging method.
would give the usual sort of average in
cases where the average does not oscil-
late. For example, both it and the ordi-
nary way of taking an average say that 9
one-half of all whole numbers are even. ‘g
His method of ‘‘zeta averages’’ says that >
the density of the set of numbers that =
begin with 1—the chance that if you pick 2
a number at random it will begin with 1—
is logq2, or .301. &

‘“This was very esoteric math,”’ Dia-
conis says. “‘It was the sort of math that
made people say, ‘Gee, that’s funny, but
why would anyone care?” ”’ In fact,
when Diaconis went to the University of
California at Berkeley in 1973 to give a
talk on his thesis as part of a job inter-
view, he recalls the Berkeley statisti-
cians saying, ‘“‘We assume you'll find
something else to work on.”’

Diaconis accepted a job at Stanford
rather than at Berkeley and he did find
many other things to work on. He all but
forgot the first digit problem. In the
meantime, Shahshahani was investigat-
ing a highly innovative way of producing
computer graphics. He got his inspira-
tion from some work done 3 years ago by
John Hutchinson of the Australian Na-
tional University in Canberra. Hutchin-
son was interested in generating fractals,
which are mathematical entities with
fractional dimensions. ‘‘There was no-
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indication that he wanted to use his
method for pictures,’’ Shahshahani says.
But Shahshahani recognized that Hutch-
inson’s ideas could be used for computer
graphics.

What Shahshahani does is to take very
ordinary curves and lines and repeatedly
apply certain simple transformations,
called affine transformations, which de-
form them. Then he looks at the fixed
points, which are those that do not move
under the transformations. By plotting
the fixed points he generates pictures of
natural objects.

Shahshahani came to Diaconis to gain
more insight into why the procedure
works and how to best choose the origi-
nal transformations. Diaconis looked at
the problem. *‘I sat there and shook my
head. The way to solve the problem is to
use exactly the crazy results from my
thesis that I never published.”

Shahshahani’s method is to start with
a few particular affine transformations,
which are operations that take a line in
the plane and first contract and rotate it
and then shift it to a new position. He
applies the first transformation to a line
and plots the fixed point. Then he applies
the second transformation and plots the
fixed point. Next he multiplies the first
transformation times the second, applies
the resulting transformation to the line,
and plots the fixed point. He then multi-
plies the second transformation times the
first (multiplication of transformations is
not commutative so the product of the
first and the second is different from the
product of the second and the first) and
repeats the process of plotting the fixed
point.

The next step is to multiply every
combination of the original transforma-
tions when they are grouped in threes,
such as 1 x2x1, 2x1x1, 1x1
X 2, and so on. Once again, these result-
ing product transformations are applied
to the line and the fixed points are plot-
ted. Shahshahani stops the process when
he gets enough points for a realistic
picture.

When Diaconis looked at Shahsha-
hani’s procedure, he recognized a math
problem that can be expressed in the
language of Markov chains—sequences
of events with the property that each
event in the chain depends only on the
preceding one. They are widely used in
statistics to model random phenomena.

In Shahshahani’s case, the Markov
chain was the sequence of affine trans-
formations. The process of picking the
transformations in the sequence gives
the same result whether it is done deter-
ministically or randomly. For example,
you could flip a coin to decide whether to

3 AUGUST 1984

start with transformation 1 or 2. Then
when you are multiplying groups of two
transformations together, you could flip
a coin to decide what order to multiply
them in.

The fundamental theorem in Markov
chain theory says that eventually the
chain has to settle down into a stationary
distribution. For example, Diaconis
says, if he is mixing the cards in a deck
and he starts with the cards in a known
order, he may proceed by switching two
cards at random. Then he may switch
two other cards. As he continues in this
way, the arrangement of cards in the
deck will get more and more random. In
that case, the stationary distribution is a
random mixture of cards.

The new and the old

To find what initial transformations
will lead to various stationary distribu-
tions required analyzing random infinite
sums—the sums being the transforma-
tions. ‘‘It was precisely like the sums in
my thesis,’”’ Diaconis remarks. ‘‘I called
Mehrdad and said, ‘I know all about
these things!” >’ Based on Diaconis’ re-
sults from analyzing the first digit prob-
lem, he and Shahshahani can predict
stationary distributions and so are able
to tell what computer pictures will look
like on the basis of the original transfor-
mations. More importantly, they can
solve the harder ‘‘inversion’’ problem of
telling what transformations will give
rise to particular pictures of natural ob-
jects.

The leaf at left was drawn with the new *‘fixed point’’ method. It required 12 numbers for the
stem and 21 for the main part of the leaf. The leaf at right was drawn in the conventional way,
by specifying the lines for the computer to draw. [Sources: Merhdad Shahshahani (left);
Cranston/Csuri Productions, Columbus, Ohio (right)]

Once Diaconis expressed Shahsha-
hani’s problem in the language of Mar-
kov chains, he saw that what Shahsha-
hani really wanted to know was the
stationary distributions he will get with
various initial transformations. That
would tell him how his choice of affine
transformations affects the computer
picture.

*“The quality that Mehrdad’s pictures
have is that they are ‘leafy.’ They don’t
smear out over the screen. They have a
delicate fine structure no matter how
closely you look,”” Diaconis remarks.
““The main issue was to determine the
mathematical notion that captures this
property.”’ Diaconis believes that the
key to leafyness is a notion of being
‘‘singular continuous,”” a mathematical
phenomenon, Diaconis says, ‘‘that was
always thought to have no application
whatsoever.”” Shahshahani disagrees,
arguing that it is other aspects of the
distribution that are important. Both
ideas, however, can be investigated with
the research the two are undertaking.

Shahshahani is developing computer
programs to implement the inversion
procedure. Now, he says, that ‘‘the math
is under control,”” he expects within a
few months to be able to make pictures
of simple natural objects, digitize them,
and reproduce them exactly on the basis
of very little stored information. This
will be ‘‘not just a leaf or a tree that looks
nice; you tell me what kind of leaf you
want and I should be able to generate
it.”’

Diaconis, in the meantime, is reread-
ing some papers on random infinite sums
published in the 1930’s by the Hungarian
mathematician Paul Erdés. ‘“Erdos stud-
ied them for no reason other than that
they were beautiful and interesting. At
the moment, I'm going over Erdés’s
papers with a fine tooth comb,” Dia-
conis remarks. It looks as if the more
that is known about these seemingly
esoteric quantities, the more will be
known about how to encode and gener-
ate computer pictures of natural objects.

—GiINA KoLATA

495

€202 ‘70 |1dy Uo BI0°30UB 105" MMM//:ST1Y WOJ | PapeouUMOQ



Typartmont- of Siafistics

PRODUCTS OF RANDOM MATRICES AND
COMPUTER IMAGE GENERATION

BY
PERST DIACONIS AND MEHRDAD SHAHSHAHANI

TECHNICAL REPORT NO, 228
NOVEMBER 198

PREPARED UNDER THE AUSPICES
OF
NATIONAL SCIENCE FOUNDATION GRANT MCSS0-246H9

~ DEPARTMENT OF STATISTICS
STANFORD  UNIVERSITY
STANFORD, CALIFORNIA




PRODUCTS OF RANDOM MATRICES AND

COMPUTER IMAGE GENERATION

BY

Persi Diaconis and Mehrdad Shahshahani

TECHNICAL REPORT NO, 228
November 1984

PREPARED UNDER THE AUSPICES
OF

NATIONAL SCIENCE FOUNDATION GRANT MCS80-24649

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY

STANFORD, CALTIFORNIA



PRODUCTS OF RANDOM MATRICES AND

COMPUTER IMAGE GENERATION

Persdi Diaconis Mehrdad Shahshahani
Department of Statistics Boeing Aerospace
Stanford University Seattle, Washington

Stanford, California

§1 Introduction.

Fractals as models for certain natural phenomena were defined and popula-
rized by Mandelbrot ([M]). Subsequently, Mandelbrot and others produced realistic
pictures of mountains, landscapes, clouds etc. using fractal methods. In [H],
Hutchinson proposed a beautiful mathematical framework for the study of fractals
(see §2). We noticed that this method can be used for computer generation of
pictures of certain natural objects while acheiving substantial data compression.
For example, the poplar tree below was generated by storing only 52 numbers. The
question naturally arose as to whether the fixed-point method of Hutchinson can
be used in a systematic fashion for computer image generation and data encoding,
It became clear that further theoretical development is necessary to apply this
procedure in a systematic manner. In this paper we give a brief account of some

of our results in this direction.



We conclude this discussion with a brief description of the algorithm that
produced Figure 1. The algorithm uses as input n affine transformations
2
{s,,...,S_.}. Here S.x = A.xtc, with x and c,eR and A, a 2X2 matrix
1 n i it i i i
with lAixl < le for all x # 0. Such a transformation has a unique fixed point;

from Six = x we have XxX= (_I—Ai)_lc . The first stage of the algorithm plots

i



the n fixed points. The second stage plots the fixed points of all n2 pro-

ducts Sisj' At stage Lk , all nk fixed points of products of length k are

plotted. The algorithm terminates when sufficiently many points have been plotted.
For the picture in Figure 1, the leaf is based on n =4, k =7 and for the

stem we have n = 3, k= 7.

§2 Fractals.,
We first review the relevant aspects of the mathematical framework proposed

by Hutchinson [H] for the study of fractals, Let A = {s .,Sn} be a finite

1
set of contracting affine transformations of R@. Then every transformation
S, .«.. S, has a unique fixed point which we denote by F. . « The fractal
i i i,...1
1 k . 1 k
object associated to A is

F{A] = closure {F,. , lall k and all i 1.

T |
11...1k 1 'k

This is the "limiting picture" produced by the algorithm of Section 1,

THEOREM 2.1 -"([H]).

(a) F[A] 1is the unique compact subset K of ]Rd with the property

K =5,(K) v...u 8 (K)
Let
Q=1{1,...,n}

be the set of all mappings of N into the finite set {1,..,,0} equipped with
the product topology.

(b) TFor an element w = (il,iz,...) e 8 and any x ¢ EF',

1im S, S, ... S, (x)
[ ) Tk



exists and is independent of x. We denote by m(w) this limiting value, and
so we have a map

TR > Bfi.

(¢) The map T 1is continuous and

Im m = F[A] .

It is not difficult to see

Corollary - F[A] 4is a perfect set unless all Sj's have the same fixed point
F , in which case F[A] = {F}.

It is clear that understanding the structure of the set F[A] is a fundamen-
tal problem in this area. There is an important special case where we can say
more about F[A].

Condition SC - We say condition SC (strongly contracting) holds if there is

an open set U ¢ Bfi and disjoint compact neighborhoods Vl’ veus Vh of

Fl’ cens Fn such that

I
S.(U) <V, u V, cT
J(‘) j? -

THEOREM 2.2 - Assume (SC) holds.
(a) T is a homeomorphism onto F[A].
(b) Suppose furthermore Sj's are similitudes (so Sj = rjA.j+cj with A.j

prthogonal) with contraction rates r, respectively. Then

3

Hausdorf dimension F[A] = D

where D is the unique real number such that

Zr? = 1
J

bl

((b) is proved in [H].)



Let (X,d) be a compact metric space and € > 0, Define

N(e) = smallest number of balls of radius € covering X
M(e) = largest integer m such that there are m points KiseeasX € X
with d(xi,xj) >e for i+ 3.
The limits

’

lim liioM(i) -c, 1im lS%ON(§> -q
>0 g >0 8

if they exist, are called capacity and metric entropy of X, Let Py be the

operator norm Of Si , and ng be the largest number such that
>
Jagxl >, lx|

for all x ¢ R@. Set

©
I

= max(pl,...,pn) ,

n= min(nl,...,nn) .

d .
For the metric space F[A] with induced metric from R~ we show

Proposition 2,3,

~— log N(g) log n
(a) lim -log € f-—log o'

(b) If condition (SC) holds, then

log n < lim log M(2g)
-log n — —— -log ¢

Furthermore, if S.'s are contractions with the same contraction rate p, then
the capacity and metric entropy of F[A] exist and are equal to the Hausdorf

dimension



log n
-log p °

§3 The Associated Markov Chain.

Let Pys «+es P be positive numbers with I pj =1, and P be the pro-

d

bability measure on the affine group A(d) = R, GL(d,R) (semi-direct product)

supported on A = {Sl""’sn} and assigning mass pj to Sj' Consider the

on iRd determined by the starting state X, = x

Markov chain {X_} 0

n ' n=0,1,... 0

and

X = A X + ¢ n >0
n Z

n+1 n+1 n+l

with (cn,An) i.i.d. from P. The basic properties of this Markov are summarized
in
THEOREM 3.1, (See [DB] and [H]).

(a) The Markov chain {Xﬁ} has a unique stationary distribution

n=0,1,...

represented by the sum

S = + Aje, + AJAc, + ...

B e R B R
with (c_,A ) i.i.d, from P.
4 n’n
(b) The law of | 1is of pure type. It is continuous unless all Sj's have
the same fixed point F , in which case S 1is atomic concentrated at F,

(¢) The law of S satisfies

E{£(S)} = [E{£(AS+c)} P(dc,dA)

for every Borel function f.
(4) Ssupp(W) = F[A].
The stationary distribution U 1is a mathematical representation of the

picture we see on the monitor. To make this relationship precise, let Ek denote



the empirical measure of the set of fixed points of all words of length k (coun-
ted with multiplicities). Then it is not difficult to show

Proposition 3.2.

(a) E, converges to U in the weak star topology.
¢)) U§=1 Supp Ej converges to supp(u) in the Hausdorf metric, and
supp(1) varies continuously with (ci,Ai).

We equip £ with the usual cylinder measure A which is the unique exchange-~

able probability measure on ! where

k({(jl,...,jk,* . 0)D = pjl..'.pjk .

The following theorem is a version of the law of large numbers; it implies that

the points hit by the Markov chain can be approximated by u.
THEOREM 3.3 - Assume condition (SC) holds, and B < Hfi is an open set
satisfying
B n F[A] = B n F[A]
| .
let x € R and for w = (11,12,...) e § let
N(w,k) = Cardinality{(il,.,.,ij)ijk, S5 ++18y (x) € B}

3001

Then there is Q' of A-measures 1 , and independent of- B , such that for all

we Q'
H(B) = lim —1\1(—2—5)— :
e

This theorem enables us to give a dynamical systems interpretation to the
Markov chain. Assume condition (SC) holds and choose w = (il,iz,...) for
which the conclusion of the theorem holds. Consider the time dependent differ-

ence scheme
Tj(x) = Si.(x) .
J
Then F[A] is the (strange) attractor for this dynamical system. This also



gives a partial answer to a question rasied by Guckenheimer about what kind of
fractals can appear as strange attractors, [Gu].

It is instructive to compare Theorem 3,3 with conclusions easily derived
from the ergodic theorem. The ergodic theorem impliés that for almost all x
in thé support of Y and almost all sample paths, the empirical measure converges
weak®* to U. Theorem 3.3‘concludes this for any starting state under the hypo-
thesis (SC). Consideratioﬁvgf éimple examples such as x +-% x; b +-%-x +-%
shows that points outside F[A] may never get into F[A],

Understanding the stationary measure is a fundamental problem. Clearly if

(SC) holds then W 1is singular. There are a number of isolated results regard-

ing absolute continuity of u , for example, Erdos [E] has shown

1
(a) If d=1,n=2, P; =Py =75,

Sl(x) = ax+l | Sz(x) = ax-1

and a = 1/7 where ¢ is a P.V. number, then U is singular continuous,
(There are infinity of P.V, numbers in the interval (1,2).)

(b) For almost all a sufficiently close to 1, u 1is absolutely con-
tinuous. See also [G] for conditions ensuring absolute continuity‘of U.
| The techniques of Erdos and Garcia can be generalized to higher dimensions
to yield some conditions for singularity or absolute continuity for U, This
gives a nice application: mathematics invented for a very different purpose

being used for a problem in computer graphics,

§4 Inverse Fractal Problem,

For the practical problem of image generation and data encoding the inverse
fractal problem is the most fundamental question. In its simplest form it may

be formulated as follows:



IFPl - Given a compact set X ¢ Bfi, does there exist a finite set A = {Sl,...,Sn}

of contracting affine transformations such that F[A] approximates X to given

accuracy, say in the Hausdorf metric?

If
o 2 -
g0 08

exists, then it is easy to see that for every § >0, a A exists such that
d(X,F[A]) < § ,

However, in this solution the cardinality of A is of the order of G—H as
§ > 0, so that such a solution has small practical implication. For the special
case of a convex polytope one has the following simple solution:

Proposition 4.1, Let X be a convex polytope with n vertices. Then

there is a set A = {Sl,...,Sn} of n contracting affine transformations such
that

X = F[A]
In this proposition we take Sj's to be of the form
S.(x) = a,Ixtc, o, R c. ¢ R
3 () = oyTxtey A

with a,'s sufficieqtly close to 1 and {Fj} is the set of vertices of the convex
polytope X. Thén, the polytope becomes the attractor K of Theorem 2,1 which
yields the desired result.

If we replace uj's by general linear transformations, then we do not know
of any simple extension of Proposition 4.1, However, 1t is important to note
that the fractal object F[A] changes continuousiy as we vary the parameters.
This fact is quite significant in the practical applications of the fixed point
method. TFurthermore, we can use the Markov chain introduced in §3 to propose a

solution to the following more precise reformulation of IFPI:

IFP2 - Given a compactly supported probability measure & on R@ , does there

exist a finite set A = {Sl""’sn} of contracting affine transformations such

9



that the stationary measure associated to A (for .some fixed p .+« P_) approx-
1 ’ *n
imates 0O to given accuracy. say in a Vasershtein metric?
For simplicity of notation, we describe our proposed solution to this

problem only for d = 1. Note that Theorem 3,1 (¢) is equivalent to
* [ £duG = T py [ £(5,0du)

where | 1is the stationary measure. Substituting
f(x) = xk
in (*) we see that

Lhs. (%) = m (W

. th '
i.e., k h central moment of . Evaluating r.h.s. (%), setting it equal

to 1.h.s. and simplifying we get

n k
k k—
Fop, VO at T elm (W
o1 j -1 r i j Tk-r
(%) m (W) = 4= = :
k n
1- 3 k
p. a.
P I

Now given a compactly supported probability measure o on R, we calculate
its first 2k(k>1l) moments. Then in principle we can solve the system of equa-
tions (*%) to obtain aj's and cj's , so k affine transformations whose station--
ary measure has the same first 2k moments as da. It is not difficult to show
that relative to the Vasershtein metric (see e.g. [BF] for definition and basic

properties), the distance between 0 and u tends to 0 as

e

The calculation above can be extended to higher dimensions, but the alge-
braic manipulations are significantly more complex, A similar method for iteration.
of maps had been developed earlier by M, Barnsley and Demko [B]. The appli-

cability of this procedure to actual problems has not yet been fully tested,

10



§5 Some Open Problems.

Here we briefly indicate a few open problems,

(a) As noted earlier, under rather ;estrictive h&pothesis one can gstablish
the existence of capacity and metric entropy for the fractal F[A], One may con-
jecture that these quantities always exist for such sets. A number of numerical
invariants, such as information dimension, are defined in [FOY]. Computing
these invariants for F[A] is an interesting problem.

(b) In view of Theorem 2.2(a), if condition (SC) holds, then F[A] is
totally disconnected. Little is known about the topological structure of F[A].
Consider for example the case of 3 contracting affine transformations Sl’ 82’ S3
of R?. Write

S.(x) = A.x + c,.
38 = Agxt ey

and assume Sj's have distinct fixed points {Fj} not lying on the same line,

If

and

Lo, > 2

then TF[A] 1is.the triangle E with vertices Fl’ Fys F3. If 0 < aj <1/2
then condition (SC) is satisfied and so F[A] is totally disconnected. We can
show that in intermediate cases where aj's are such that aj+ak >1 for all
j,k , and Oq oy Fa, < 2 , F[A] 1is path-wise connected, and its first homotopy

group Wl(F[A]) is infinitely generated. Clearly one may conjecture many gen-—

eralizations of this result.

(¢) The stationary measure U 1is a fundamental quantity both from the

theoretical and practical standpoints. Unfortunately, we only know of some

11



isolated results about the nature of 1, One possible approach for establishing
absolute continuity of Y in some cases is as follows: Define the operator T

on Ll(RQ) by
T(P)(x) = X Pj(det Aj) ¢(ij)

where ij = ij+cj. Given any probability density ¢ , the average

1 m-1 .

= ] 1T = F ()

m m

j=0

converges weakly to the stationary distribution 1. If one shows that the se-
quence {Fm(¢)} is of bounded variation, then one can deduce absolute conti-
nuity of WU. This idea has been successfully used in the theory of iteration
of maps (see e.g. [LY]), and so one may expect it to be applicable to this case
too.

Arguments based on Fourier analysis (such as in [El] and [E2]) are another

possible approach to understanding the nature of the measure .
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