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1 Problem

Deduce the location of the center of mass/energy of a hoop of rest mass m0 and rest radius
a when it rolls without slipping on a horizontal surface with speed v that is not negligible
compared to the speed of light c.

2 Solution

This problem is taken from sec. VII-5 of [1]. See also sec. 10,8 of [2], and [3].

2.1 Shape of the Rolling Hoop

In the first approximation the center of mass is at x = vt, y = 0, supposing the hoop rolls
with speed v in the x-direction on the surface y = −a.

However, the top of the rolling hoop has higher speed (≈ 2v) than the bottom (which
is instantaneously at rest in the lab frame, so the relativistic mass (= energy/c2, where c is
the speed of light in vacuum) of an element of the hoop is larger at larger y, and the center
of mass/energy is above its geometric center (x, y) = (vt, 0).

We suppose that the hoop is a “rigid” body in the following sense. The � frame is defined
to be the inertial frame that moves in the x-direction at velocity v = v x̂ with respect to
the lab frame, with the geometric center of the hoop at the origin in this frame. We take
the hoop to be a circle of radius a in the � frame. The hoop rotates with angular velocity
ω� = −ω ẑ about the z-axis, where ω = v/a. The relativistic mass (= energy/c2) m� of the
hoop in the � frame is,

m� = γm0, where γ =
1√

1 − v2/c2
, (1)

and is uniformly distributed in arc length ds� around the hoop,

dm�

ds�
=

m�

2πa
=

γm0

2πa
. (2)

A point on the spinning hoop can be parameterized as,

x� = a sin(ωt� + φ�), y� = a cos(ωt� + φ�). (3)

The lab-frame coordinates of this point are,1

x = γ(x� + vt�), y = y�, t = γ(t� + vx�/c2), (4)

1In the lab frame, a point on the hoop follows a trajectory of a cycloid stretched in the x-direction by
factor γ, with spatial period 2πγa rather than 2πa.

1



with the inverse relations,

x� = γ(x − vt), y� = y, t� = γ(t− vx/c2). (5)

Combining eqs. (3) and (5), we see that the hoop has the form of an ellipse (Lorentz-
contracted in the x-direction) in the lab frame,

(x − vt)2

(a/γ)2
+

y2

a2
= 1. (6)

If the hoop had two rods along orthogonal diameters in its rest frame, these rods would
appear in the lab frame as shown on the left below (from [1]; the figure to the right is from
[3]) at the moment when one of the rods is vertical.

The velocity of point (3) in the � frame is,

u� = ω� × a� = ω(y�,−x�) =
v

a
(y�,−x�). (7)

In the lab frame this point has velocity,

u =
v + u�

x + u�
y/γ

1 + v · u�/c2
= v

(1 + y�/a) x̂ + x� ŷ/γa

1 + v2y�/ac2
=

v

a

(a + y) x̂ + (x − vt) ŷ

1 + v2y/ac2
. (8)

The speed u is symmetric about the vertical axis x = vt. At the top and bottom of the
rolling wheel in the lab frame, where x = vt and y = ±a, the instantaneous speed of a point
on the hoop is 2v/(1 + v2/c2) < c and 0, respectively.2

2.2 Position of the Center of Mass (First Analysis)

A mass element dm� centered on point (3) has energy-momentum 4-vector (dE�, c dp�) =
(c2 dm�, c dm�u�) in the � frame, and its energy in the lab frame is,

dE = c2 dm = γ(c2 dm� + v dm�u�
x) = γc2 dm�

(
1 +

v2y�

ac2

)
. (9)

Thus, the total mass m of the hoop in the lab frame is (recalling eq. (2)) given by,3,4

m =

∫
dm =

∫
dm

ds�
ds� = γ

dm�

ds�

∫ (
1 +

v2y�

ac2

)
ds� =

γ2m0

2πa

∫ (
1 +

v2y�

ac2

)
ds� = γ2m0.(10)

2The point at the top of the hoop has boost γtop = γ2(1 + v2/c2).
3As v → c, half of the rest mass becomes concentrated near the point of the top of the hoop, where the

boost goes to 2γ2; the other half of the rest mass is spread around the hoop with little contribution to m.
4If the hoop were sliding rather than rolling, its relativistic mass in the lab frame would be γm0.
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Similarly, the center of mass/energy xcm in the lab frame is given by,

mxcm =

∫
(x x̂ + y ŷ) dm =

∫
[(x�/γ + vt) x̂ + y� ŷ]

dm

ds�
ds�

=
γ2m0

2πa

∫
[(x�/γ + vt) x̂ + y� ŷ]

(
1 +

v2y�

ac2

)
ds�

= mvt +
mvω ŷ

2πac2

∫
y�2 ds� = mvt +

ma2ωv ŷ

2c2
= mvt− S × v

2c2
, (11)

where,

S =
m ω

2πa

∫
(x�2 + y�2) ds� =

m ω

πa

∫
y�2 ds� = ma2 ω (12)

is the “spin” angular momentum of the hoop about its geometric center.5 Thus,

xcm = vt− S× v

2mc2
= x0 − S× v

2mc2
, (13)

where x0 = vt is the position of the geometric center of the rolling hoop. That is, the center
of mass/energy of the rolling hoop is shifted (upwards) relative to its geometric center.

The velocity of the center of mass is the same as the velocity of the geometric center of
the hoop,

vcm = v0 = v. (14)

The above analysis did not take into account that the rolling hoop has internal forces/stresses,
In the lab frame these stresses are largest near the top of the hoop, where the speed is the
greatest. Since there is mass/energy associated with the internal stresses, it seems likely
that the position of the center of mass/energy is even higher above the centroid, x0 = vt,
than indicated in eq. (13).

We pursue this additional upward shift in the following two sections.

2.3 Position of the Center of Mass (Second Analysis)

This section follows [5]. See also [1, 6, 7], sec. 64 of [8]6 and [9, 10, 11]. This topic has an
extensive history in considerations of the quantum position operator. For a review, see [12].

The mechanical behavior of a macroscopic subsystem can be described with the aid of
its (symmetric) stress-energy-momentum 4-tensor T μν. The quantity,

P μ = (U/c, P i) = (U/c,P) =

∫
T 0μ

c
dVol. (15)

5The spin angular momentum (about the geometric center) of the hoop in the � frame is S� = m�a2 ω,
and S = γS� is the 3-vector part of Lorentz transform of the spin 4-tensor.

6In thermodynamics a closed subsystem can have exchange of energy, but not matter, with other sub-
system, whereas an isolated subsystem has no exchange of mass/energy. The term closed system in [5, 8]
corresponds to the term isolated system of thermodynamics.
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describes the total energy and momentum of the subsystem, although P μ is not truly a
4-vector unless the subsystem is isolated.7

The total mass/energy of the subsystem is,

U =

∫
T 00 dVol, (16)

and we define the effective mass of the subsystem as,

M =
U

c2
=

∫
T 00

c2
dVol =

∫
ρ dVol, (17)

where we define the effective mass density of the subsystem to be ρ = T 00/c2. The center of
mass/energy of the subsystem is at position,

xμ
cm =

1

U

∫
T 00xμ dVol, xcm =

1

M

∫
T 00

c2
x dVol. (18)

where xμ = (ct,x), as characterizing the coordinates of the center of mass/energy of the
subsystem.

In general, the lab-frame quantity xμ
cm is not a 4-vector, and it is not the Lorentz trans-

formation xμ
0 of the quantity,

x�μ
0 ≡ x�μ

cm =
1

U�

∫
T �00x�μ dVol�, (19)

where the � frame is the (instantaneous) frame of the subsystem in which its total 3-
momentum is zero (but where the angular velocity is still ω),

0 = P �i =

∫
T �0i

c
dVol�. (20)

We denote the lab-frame transform of the quantity x�μ
0 as xμ

0 , which we will call the centroid.8

Note that x0
0 = ct = x0

cm. The velocity of the boost from the � frame to the lab frame is
vcm of eq. (14). Hence, the velocity v0 of the centroid is the same as the velocity vcm of the
center of mass/energy, even though the position x0 is not necessarily that same as xcm.

As seen in sec. 2.2 the difference between xcm and x0 in the lab frame is related to the
presence of angular momentum in the subsystem, so we introduce the quantity,

Lμν =

∫
xμT 0ν − xνT 0μ

c
dVol, (21)

as the (antisymmetric) angular momentum 4-tensor of the subsystem. Further, we introduce
the “spin” angular momentum tensors, defined by,

Sμν
0 = Lμν − (xμ

0P
ν − xν

0P
μ), (22)

7In case of a nonisolated system, P μ of eq. (15) has been called a “false” 4-vector [13].
8The coordinates xμ

0 are called those of the proper center of mass in [8].
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and,
Sμν

cm = Lμν − (xμ
cmP ν − xν

cmP μ), (23)

which subtract away the angular momentum associated with the energy/momentum of the
centroid, and of the center of mass/energy, respectively.

For an antisymmetric 4-tensor Aμν we construct two 3-vectors a and ã and according to,

a = (a23, a31, a12) and ã = (a10, a20, a30). (24)

Then, for either of the spin 4-tensors (22)-(23) we can write,

S = L− x × P, S̃ = L̃ − Mcx + ctP, and so x =
1

Mc

(
L̃ − S̃ + ctP

)
, (25)

where from eqs. (21),

L =

∫
x × p dVol, and L̃ = Mcxcm − ctP. (26)

In particular, from eqs. (22) and (25)-(26) we obtain an expression for the lab-frame 3-
position of the centroid,9

x0 = xcm − S̃0

Mc
. (27)

This result was deduced in the lab frame, but it also holds in the � frame, where x�
0 = x�

cm,
so it must be that S̃�

0 = 0. Then, since P� = 0, we have that,

S�μν
0 P �

ν = 0. (28)

IF Sμν
0 and P μ are a 4-tensor and a 4-vector, respectively, with respect to Lorentz trans-

formations, then in the lab frame we have that10

0 = Sμν
0 Pν , S̃0 · P = 0 for μ = 0, Mc S̃0 = −S0 × P, for μ = 1, 2, 3, (30)

and,

x0 = xcm − S0 × P

M2c2
= xcm − S0 × v0

Mc2
. (31)

as in eq. (8), but now the term in S is twice as large, as anticipated qualitatively at the end
of sec. 2.2 above.11,12

9Using eq. (23) rather than (22) leads only to S̃cm = 0, which also follows directly from eq. (23).
10In the � frame, x�μ

0 = x�μ
cm, so we also have that the spin tensors are the same in this frame, S�μν

0 = S�μν
cm ,

and in particular S̃�
0 = S̃�

cm = 0. Since P� = 0, we have that S�μν
cm P �

ν = 0. If Sμν
cm were a 4-tensor with

respect to Lorentz transformations, then in the lab frame we would have that,

0 = Sμν
cmPν, S̃cm · P = 0 for μ = 0, Mc S̃cm = −Scm × P, for μ = 1, 2, 3. (29)

This contradicts the fact that S̃cm = 0, so we infer that Sμν
cm is not a tensor under Lorentz transformations.

11In [7] it is shown that S0 · P = Scm · P = L · P and that x0 = xcm + Scm × P/M2
0 c2 (with the + sign

miswritten as a −).
12The result (31) appears in eq. (8) of [14], with v0 taken to be the velocity of the observer relative to

the sphere, i.e., −v0 of this note. This result was also discussed around eq. (7) of [15], with the claim that
x0 rather than xcm is the “true” center of mass.
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A spinning sphere can be regarded as a collection of hoops with a common axis of rotation.
Hence, the result (31) applies to spinning spheres as well as to hoops.

For an application of this result to the interesting case of two spinning spheres, linked
together by a “mechanical” rod or by gravity, and orbiting about one another, see [16].

2.4 The Hoop as a String

An interesting analysis of stresses in a spinning object has been given in [17], where it is
supposed that the centripetal forces needed to sustain rotational motion are provided by
strings that connect a set of more massive points which comprise the system.

In particular, for a rotating “dumbell”, consisting of two masses joined by a string, the
center of mass of the system would appear to oscillate in a frame in which the geometric
center of the system moves with constant velocity, if one does not take into account the
energy in the string.13

A hoop could be regarded as a loop of string, with no other point masses. Then, the
methods of [17] could be applied to give a particular model of the energy-momentum-stress
tensor of the hoop, to supplement the general considerations given in sec. 2.3 above.
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