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1 Problem

In the 1800’s, many people sought an explanation of light as (transverse) vibrations in a
mechanical medium, the luminiferous æther, that filled the Universe. A famous experiment
of Fizeau [1, 2] found an effect in which water flowed in opposite directions in the two arms
of an interferometer, who interpreted of this result as evidence for partial, but not complete,
“dragging” of the æther in the apparatus.1 This led to the experiment of Hoek [6] (sketched
below, which had still water in one path of the “ring” interferometer, always at rest with
respect to the Earth), that reported a null result (i.e., no interference fringes at all, so the
setup was defective in some way). Then, the famous Michelson-Morley experiment [7, 8, 9]
observed interference fringes in a rotating interferometer (without water along any path),
which fringes did not shift during the rotation, consistent with complete “dragging” of the
æther in the apparatus, as well as the theory of special relativity [10].

The laboratories of these experiments, on the surface of the Earth, were not strictly iner-
tial frames (in which no effect would be expected according to special relativity). An effect
of the rotation of the Earth was predicted by Michelson [11] (1904) in a “ring” interferometer
where light propagated in both directions around the ring.2 This prediction was elaborated
upon by von Laue (1911)[13, 14]; see also [15]. An experiment by Michelson (1925) [16] with
a ring interferometer of area roughly one square kilometer detected a small effect due to the
rotation of the Earth, as consistent with special relativity.3,4

A key aspect of Hoek’s interferometer (and also Fizeau’s), with a dielectric medium in one
path, is that effects of velocity are first order, rather than second order, as in interferometers
whose paths are in air/vacuum.

Consider the interferometer sketched on the next page, in the frame of reference of the

1Discussions of complexities in Fizeau’s experiment are given, for example, in [3, 4, 5].
2An early discussion of possible effects due to the motion of the Earth is sec. 76 of [12].
3Some discussion of Michelson’s 1925 experiment is given in Appendix A.1.4 below.
4Ring interferometers exhibit a phase shift in their fringe pattern, when rotating about an axis perpen-

dicular to the plane of the interferometer, compared to the pattern for no rotation. This effect was observed
in table-top experiments “accidently” by Harress [17, 18, 19] (1911), and then “on purpose” by Sagnac
[20, 21, 22] (1913). Reviews of the Sagnac effect include [23, 24].
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Sun, approximating that frame as inertial. For simplicity, suppose the Earth’s orbit is a
circle of radius R, and that the axis of the Earth is not tilted with respect to the plane of its
orbit about the Sun. The center of the interferometer is at latitude θ in, say, the northern
hemisphere. The optical paths in the rectangle of the interferometer have lengths h and l,
and one of the paths of length l has a glass block of length L < l and index of refraction n.
The interferometer is driven by a laser of wavelength λ (in air).

Deduce the phase differences Δφ12 and Δφ34 between the beams of light at beam splitter
BS1 and splitter BS2 along the two paths 1-2 and 3-4. The difference of these differences
characterizes the pattern of fringes that can be observed on the screen.

If the interferometer is rotated (quickly) about its center by 180◦, as in the lower sketch
below, the fringe pattern will shift by the difference of differences computed above.

In addition to the (approximately) inertial frame of the Sun, we consider an accelerated
(x′, y′, z′) coordinate system fixed to the Earth, with x′ to the East, y′ to the North, and z′

vertical, with its origin at the center of the interferometer.
It suffices to calculate only to first order in the velocities of elements of the interferometer,

such that the Lorentz contraction of the interferometer, as observed in the frame of the Sun,
can be ignored. Also, in the accelerated (x′, y′, z′) frame the paths of the light between the
various mirrors are slightly curved, but can be approximated as straight to first order in
velocity.

This analysis is equivalent to assuming that the Sun is at rest in a classic æther, in
which the speed of light is c in all directions. That is, experiments of the type of Hoek (and
Sagnac; see [25]) do not distinguish between special relativity and an æther theory without
“dragging” (in contrast to the experiment of Michelson and Morley [9], which is sensitive to
second-order effects in velocity). Hence, the experiment of Hoek has seldom been repeated.

This note was inspired by e-discussions with An Rodriguez.

2 Solution

The analysis below compares various configurations of the interferometer at rest with respect
to the surface of the Earth. In practice, the interferometer is in steady rotation, with respect
to the Earth, about a vertical axis through its center, which leads to a phase shift between the
two beams at the output of splitter BS2. This phase shift is independent of the orientation
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of the interferometer, and so does not affect the comparisons below, where it is neglected.5

We assume that the lengths of path segments 1 and 4 in the sketches above are the same,
namely l, although this was not necessarily true in the 1925 experiment of Michelson [16],
as mentioned in footnote 8 below.

The speed of light in vacuum/air is c (in all directions) in any inertial frame. This applies
to the approximation, used here, that the rest frame of the Sun is inertial.

The velocity v of the center of the interferometer in the inertial frame of the Sun is,

v = ΩR cos ωt + ωr cos θ, (1)

where the center of the interferometer is at latitude θ and distance r from the center of the
Earth. Here, Ω is the angular velocity of the Earth in its (approximately circular) orbit
about the Sun, ω is the angular velocity of the Earth about its axis,6 and the factor cosωt
refers to solar time with t = 0 at the local midnight at the interferometer.

For more detailed analysis of the interferometer, we consider only two configurations of
it, the upper and lower sketched on the previous page. These two configurations differ by
a rotation of 180◦ about the center of the interferometer. For both configurations we use a
local coordinate system with the x′-axis pointing east and the y′-axis pointing north.

2.1 “Upper” Configuration

The velocities of path segments 1 and 4 (in the inertial frame of the Sun) are in the x′

direction, and differ slightly from eq. (1). For the “upper” configuration, these velocities
have the forms,

v1 = ΩR cos ωt + ωr cos(θ − h/2r) ≈ ΩR cosωt + ωr

(
cos θ +

h

2r
sin θ

)
, (2)

v4 = ΩR cosωt + ωr cos(θ + h/2r) ≈ ΩR cos ωt + ωr

(
cos θ − h

2r
sin θ

)
. (3)

The speed of light, with respect to the frame of the Sun, that travels in the ±x′ direction
inside the (moving) glass block is,

c′1 =
c ∓ nv1

n ∓ v1/c
≈ c

n
(4)

using eq. (25) of [26]. That is, corrections to the speed, c/n, of light inside a medium with
index n at rest (in an inertial frame) are second-order in the velocity of the medium.

We now want to compute the phases of the two waves, that travel along paths 1-2 and
3-4, at beam splitter BS2 at time t = 0, relative to their common phase at splitter BS1 at
time t = 0.7 Recall that as a plane wave of form ei(k·x−�t), where �/k is the wave speed,
propagates from one spacetime point to another its phase φ = k · x − �t does not change.
Hence, the phases we desire at splitter BS2 at time t = 0 are the same as those of the waves
at the earlier time when they passed through splitter BS1.

5This phase shift was important in the 1925 experiment of Michelson [16], where the giant interferometer
was at rest with respect to the (rotating) Earth, as discussed in Appendix A.1.4 below.

6ΩR ≈ 10−4c ≈ 67 ωr, while ω ≈ 365 Ω.
7Each of the two paths involves two reflections to reach the output side of splitter BS1 from the input

side of splitter BS1. Since a 180◦ phase change occurs at each reflection, these phase changes are 360◦ on
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2.1.1 Path 3-4

We first consider path 3-4 for the “upper” configuration of the interferometer in the figure
on p. 2. Segment 3 is in motion in the x′-direction, so the path of light between the first
beam splitter and the mirror is slightly tilted with respect to the y′ axis and the optical path
length is slightly longer than h. However, this effect is of second order in the velocity of the
interferometer in the frame of the Sun, so we take the length of path 3 as approximately h.
Then, the travel time of light along path 3 is approximately Δt3 = h/c.

Segment 4 has x′-velocity (3) with respect to the frame of the Sun. The travel time Δt4
along this path in the “upper” configuration of the interferometer is related by,

cΔt4 = l + v4Δt4, Δt4 =
l

c − v4

≈ l

c

(
1 +

v4

c

)
. (5)

The total travel time along path 3-4 is Δt3 + Δt4, so the light that arrived at the beam
splitter BS1 at time t = 0 along path 3-4 left the splitter BS1 at time −Δt3 − Δt4, when
splitter BS1 was at position Δx′ = −v1(Δt3 + Δt4) relative to its position at t = 0. In
the “upper” configuration the wave incident on splitter BS1 has the form ei(kx′−�t), so the
phase of the beam at this earlier position and time was, relative to the phase of the beam
at splitter BS1 at time t = 0,

Δφ34 = −kv1(Δt3 + Δt4) + kc (Δt3 + Δt4) =
2π

λ

(
1 − v1

c

) [
h + l

(
1 +

v4

c

)]

≈ 2π

λ

(
h + l − v1

c
h +

v4 − v1

c
l

)
. (6)

This is also the phase difference between the beam that arrived at splitter BS2 at time t = 0
along the path 3-4 and the phase of the beam at splitter BS1 at time t = 0.

2.1.2 Path 1-2

We now turn to the beam along path 1-2, which includes the glass block along segment 1.
The travel time along path segment 2 is the same as that along segment 3, so to first

order in velocity, Δt2 = Δt3 = h/c.
The travel along segment 1 is in air for distance l −L and in glass for distance L. Inside

the latter, the speed of light along the x′ axis in the inertial frame of the Sun is c/n to first
order in the velocity of the glass block, as noted in eq. (4) above. Then, the travel time of
light in segment 1 is, similarly to the argument of eq. (5) but with v4 → v1,

Δt1 ≈ l − L

c

(
1 +

v1

c

)
+

L

c/n

(
1 +

v1

c/n

)
=

l − L

c

(
1 +

v1

c

)
+

nL

c

(
1 +

nv1

c

)
. (7)

both paths, and can be ignored in the analysis.
There is also a 90◦ phase shift between the reflected and transmitted beams at a splitter. Since each of

the two paths involves one reflection and one transmission at a splitter, there is no net phase difference in
the two beam due to their passage through the splitters.

See, for example, Prob. 4 of [27].
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And, similarly to eq. (6), the phase difference between the beam that arrived at splitter BS2
at time t = 0 along the path 1-2 and the phase of the beam at splitter BS1 at time t = 0 is,

Δφ12 = k(c − v1)(Δt1 + Δt2) =
2π

λ

(
1 − v1

c

) [
h + (l − L)

(
1 +

v1

c

)
+ nL

(
1 +

nv1

c

)]

≈ 2π

λ

(
h + l + (n − 1)L − v1

c
h + n(n − 1)L

v1

c

)
. (8)

2.1.3 Difference of Phase Differences for the “Upper” Configuration

From eqs. (6) and (8) we have, for the “upper” configuration of the interferometer as sketched
on p. 2,

Δφ12 − Δφ34 ≈
2π

λ

(
(n − 1)L + n(n − 1)L

v1

c
+

v1 − v4

c
l

)

≈ 2π

λ

{
(n − 1)L + n(n − 1)L

[
ΩR

c
cos ωt +

ωr

c

(
cos θ +

h

2r
sin θ

)]
+

ωhl sin θ

c

}
, (9)

recalling eqs. (2)-(3), with t = 0 at local midnight.
Even without the glass block, there is a term proportional to the angular velocity ω of

rotation of the Earth about its axis and to the area hl of the interferometer. Such a term
appears also in Sagnac-type interferometers.

The presence of the glass block leads to terms that depends both on the angular velocity
Ω of the Earth in its orbit around the Sun and on the angular velocity ω.

2.1.4 Comparison of the “Upper” Configuration at Midnight and Noon

The difference (9) of phase differences implies a shift of the pattern of fringes observed on
the screen of the interferometer, but a single observation does not provide a reference phase
for the pattern. One way to extract information from the fringe pattern is to compare it for
the same configuration of the interferometer (“upper” or “lower”) at different times, such as
midnight and noon (local time). A shift between these two observed fringe patterns for the
“upper” configuration corresponds to, from eq. (9),

(Δφ12 −Δφ34)midnight − (Δφ12 − Δφ34)noon ≈ 4π

λ
n(n − 1)L

ΩR

c
. (10)

This effect is related only to the angular velocity Ω of the Earth about the Sun, and not to
rotation of the Earth about its axis. It vanishes if the glass block is absent.

Since ΩR/c ≈ 10−4 and L/λ ≈ 104, this shift is of order an entire fringe.

2.2 “Lower” Configuration

For the “lower” configuration of the interferometer, as sketched on p. 2, the velocities of path
segments 1 and 4 (in the inertial frame of the Sun) in the x′-direction have the forms,

v1 = ΩR cos ωt + ωr cos(θ + h/2r) ≈ ΩR cosωt + ωr

(
cos θ − h

2r
sin θ

)
, (11)

v4 = ΩR cosωt + ωr cos(θ − h/2r) ≈ ΩR cosωt + ωr

(
cos θ +

h

2r
sin θ

)
, (12)
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which differ from eqs. (2)-(3) by the signs of the terms in path length h.
Again, the speed of light, with respect to the frame of the Sun, inside the glass block of

index n is c/n, to first order in the velocity of the block.

2.2.1 Path 3-4

We now consider path 3-4 for the “lower” configuration of the interferometer in the figure
on p. 2.

Again, the optical path length in (moving) segment 3 is affected by the motion only
at second order in the velocity, so the travel time of light along path 3 is approximately
Δt3 = h/c.

Segment 4 has x′-velocity (12) with respect to the frame of the Sun, while the light in
this segment travels in the −x′ direction in the “lower” configuration. The travel time Δt4
along this path in the “lower” configuration of the interferometer is related by,

cΔt4 = l − v4Δt4, Δt4 =
l

c + v4
≈ l

c

(
1 − v4

c

)
. (13)

The total travel time along path 3-4 is Δt3 + Δt4, so the light that arrived at the beam
splitter BS2 at time t = 0 along path 3-4 left splitter BS1 at time −Δt3−Δt4, when splitter
BS1 was at position Δx′ = −v1(Δt3 + Δt4) relative to its position at t = 0. In the “lower”
configuration the wave incident on splitter BS1 has the form ei(−kx′−�t) (taking the time
dependence of the light to be e−iωt in both the “upper” and “lower” configurations), so the
phase of the beam at this earlier position and time was, relative to the phase of the beam
at splitter BS1 at time t = 0,

Δφ34 = +kv1(Δt3 + Δt4) + kc(Δt3 + Δt4) =
2π

λ

(
1 +

v1

c

) [
h + l

(
1 − v4

c

)]

≈ 2π

λ

(
h + l +

v1

c
h +

v1 − v4

c
l

)
. (14)

This is also the phase difference between the beam that arrived at splitter BS2 at time t = 0
along the path 3-4 and the phase of the beam at splitter BS1 at time t = 0.

2.2.2 Path 1-2

We now turn to the beam along path 1-2, which includes the glass block along segment 1.
The travel time along path segment 2 is the same as that along segment 3, so to first

order in velocity, Δt2 = Δt3 = h/c.
The travel along segment 1 is partly in air and partly in glass. Inside the latter, the

speed of light along the x′ axis in the inertial frame of the Sun is c/n to first order in the
velocity of the glass, as noted in eq. (4) above. Then, the travel time of light in segment 1
is, similarly to the argument of eq. (13),

Δt1 ≈ l − L

c

(
1 − v1

c

)
+

nL

c

(
1 − nv1

c

)
. (15)
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And, similarly to eq. (14), the phase difference between the beam that arrived at splitter
BS2 at time t = 0 along the path 1-2 and the phase of the beam at splitter BS1 at time
t = 0 is,

Δφ12 = k(c + v1)(Δt1 + Δt2) =
2π

λ

(
1 +

v1

c

) [
h + (l − L)

(
1 − v1

c

)
+ nL

(
1 − nv1

c

)]

≈ 2π

λ

(
h + l + (n − 1)L +

v1

c
h − n(n − 1)L

v1

c

)
. (16)

2.2.3 Difference of Phase Differences for the “Lower” Configuration

From eqs. (14) and (16) we have, for the “lower” configuration of the interferometer as
sketched on p. 2,

Δφ12 − Δφ34 ≈
2π

λ

(
(n − 1)L − n(n − 1)L

v1

c
− v1 − v4

c
l

)

≈ 2π

λ

{
(n − 1)L − n(n − 1)L

[
ΩR cos ωt

c
+

ωr

c

(
cos θ +

h

2r
sin θ

)]
− ωhl sin θ

c

}
, (17)

recalling eqs. (11)-(12).

2.2.4 Comparison of the “Lower” Configuration at Midnight and Noon

The difference (17) of phase differences implies a shift of the pattern of fringes observed on
the screen of the interferometer, but a single observation does not provide a reference phase
for the pattern. One way to extract information from the fringe pattern is to compare it for
the “lower” configuration of the interferometer at midnight and noon (local time). A shift
between these two observed fringe patterns corresponds to, from eq. (17),

(Δφ12 − Δφ34)midnight − (Δφ12 − Δφ34)noon ≈ −4π

λ
n(n − 1)L

ΩR

c
, (18)

which is the negative of that found in sec. 2.1.4 above.

2.2.5 Comparison of the “Upper” and “Lower” Configurations

We can also consider a comparison between the fringe patterns observed with the “upper”
and “lower” configurations, by mounting the interferometer on a rotating platform. Then,
the comparison between the “lower” configuration with the “upper” configuration one-half
rotation apart in time is, from eqs. (9) and (17),

(Δφ12 − Δφ34)upper − (Δφ12 − Δφ34)lower ≈
4π

λ

{
n(n − 1)L

[
ΩR cosωt

c
+

ωr

c

(
cos θ +

h

2r
sin θ

)]
+

ωhl sin θ

c

}

≈ 4π

λ
n(n − 1)L

(
ΩR

c
cos ωt +

ωr cos θ

c

)
. (19)

Since L/λ ≈ 104 for a “table-top” interferometer and ΩR/c ≈ 10−4, the shift of the fringe
pattern every half rotation at midnight or noon (local time) is of order 1 fringe, while at 6
am and 9 pm the shift is only about 1/70 fringe (recalling that ωr ≈ ΩR/70.
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A Appendix: Analysis for Hoek’s Original Experiment

Hoek’s original experiment [6] involved propagation of light in both clockwise (CW) and
counter-clockwise (CCW) senses using a single beam splitter and three mirrors, as sketched
below. This is a “ring” interferometer configuration, and the interferometer has nonzero
angular velocity due to the rotation of the Earth, even though it was fixed with respect to
the Earth. In a sense, Hoek’s experiment was a precursor of Sagnac’s [22].

We want to compute the phase difference at time t = 0 between the clockwise and counter-
clockwise beams at the final output side of the beam splitter, relative to their common phase
at the input side of the beam splitter at t = 0. We will do this for both the “upper” and
“lower” configurations shown above, although Hoek used only a single configuration, say,
the “upper” one.

The clockwise path involves two reflections off the beam splitter and three reflections off
the mirrors, while the counter-clockwise path involves two transmissions through the beam
splitter, and three reflections off the mirror. This results in a 180◦ phase difference between
the two beams in their final path to the screen that will be ignored in the following.

A.1 “Upper” Configuration

In the “upper” configuration of the interferometer sketched above, the velocities of path
segments 1 and 4 have the same forms as in sec. 2.1 above,

v1,up = ΩR cos ωt + ωr cos(θ − h/2r) ≈ ΩR cos ωt + ωr

(
cos θ +

h

2r
sin θ

)
, (20)

v4,up = ΩR cos ωt + ωr cos(θ + h/2r) ≈ ΩR cosωt + ωr

(
cos θ − h

2r
sin θ

)
. (21)

As before, t = 0 at (local) midnight.

A.1.1 Counter-Clockwise Beam

A.1.1.1 Paths 2 and 3
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As discussed in sec. 2.1.1 above, the transit times of light along paths 2 and 3 are
just Δt2 = Δt3 ≈ h/c to first order in velocity, for both clockwise and counter-clockwise
propagation.

A.1.1.2 Path 4

In the “upper” configuration, segment 4 has x′-velocity (21) with respect to the frame of
the Sun. For counter-clockwise propagation, the travel time Δt4,CCW along this path in the
“upper” configuration of the interferometer is related by,

cΔt4,CCW = l − v4,upΔt4,CCW, Δt4,CCW =
l

c + v4,up
≈ l

c

(
1 − v4,up

c

)
. (22)

A.1.1.3 Path 1

In the “upper” configuration, segment 1 has x′-velocity (20) with respect to the frame
of the Sun. Travel along this path is partly in air and partly in glass, so the time Δt1,CCW

along this path in the “upper” configuration of the interferometer is related by,

Δt1,CCW ≈ l − L

c

(
1 +

v1,up

c

)
+

nL

c

(
1 +

nv1,up

c

)
, (23)

as in eq. (7).

A.1.1.4 ΔtCCW and ΔφCCW

The total travel time for counter-clockwise propagation is ΔtCCW = Δt1,CCW + Δt2 +
Δt3 + Δt4,CCW, so the light that arrived at the beam splitter at t = 0 after a round trip
started from the beam splitter at time t = −ΔtCCW, when the splitter was at position
Δx′ = −v1,upΔtCCW. In the “upper” configuration the wave incident on splitter BS1 has the
form ei(kx′−�t), so the phase of the beam at this earlier position and time was, relative to the
phase of the beam at splitter at time t = 0,

ΔφCCW = −kv1,upΔtCCW + kcΔtCCW

=
2π

λ

(
1 − v1,up

c

) [
2h + l

(
1 − v4,up

c

)
+ (l − L)

(
1 +

v1,up

c

)
+ nL

(
1 +

nv1,up

c

)]

≈ 2π

λ

(
2h + 2l + (n − 1)L − v1,up

c
2h − v1,up + v4,up

c
l + n(n − 1)

v1,up

c
L

)
. (24)

This is also the phase difference between the beam that arrived at splitter BS at time t = 0
after a round trip and the phase of the incident beam at splitter BS at time t = 0.

A.1.2 Clockwise Beam

A.1.2.1 Paths 2 and 3

Again, the transit times of light along paths 2 and 3 are just Δt2 = Δt3 ≈ h/c to first
order in velocity, for both clockwise and counter-clockwise propagation.

A.1.2.2 Path 4
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Clockwise propagation along segment 4 in the “upper” configuration has the same form
as that in sec. 2.2.1 above (but with v4 given by eq. (21); and also eq. (22) with sith sign of
v4 reversed),

Δt4,up ≈ l

c

(
1 +

v4,up

c

)
. (25)

A.1.2.3 Path 1

Segment 1 has x′-velocity (20) with respect to the frame of the Sun. For clockwise prop-
agation, the time Δt1,CW along this path in the “upper” configuration of the interferometer
is related by,

Δt1,CW ≈ l − L

c

(
1 − v1,up

c

)
+

nL

c

(
1 − nv1,up

c

)
, (26)

which is that of eq. (23) with the sign of v1,up reversed.

A.1.2.4 ΔtCW and ΔφCW

The total travel time for clockwise propagation is ΔtCW = Δt1,CW +Δt2 +Δt3 +Δt4,CW,
so the light that arrived at the beam splitter at t = 0 after a round trip started from the
beam splitter at time t = −ΔtCW, when the splitter was at position Δx′ = −v1,upΔtCW. In
the “upper” configuration the wave incident on splitter BS1 has the form ei(kx′−�t), so the
phase of the beam at this earlier position and time was, relative to the phase of the beam
at splitter at time t = 0,

ΔφCW = −kv1,upΔtCW + kcΔtCW

=
2π

λ

(
1 − v1,up

c

) [
2h + l

(
1 +

v4,up

c

)
+ (l − L)

(
1 − v1,up

c

)
+ nL

(
1 − nv1,up

c

)]

≈ 2π

λ

(
2h + 2l + (n − 1)L − v1,up

c
2h +

v4,up − 3v1,up

c
l − n(n − 1)

v1,up

c
L

)
. (27)

This is also the phase difference between the beam that arrived at splitter BS at time t = 0
after a round trip and the phase of the incident beam at splitter BS at time t = 0.

A.1.3 ΔφCCW − ΔφCW

The phase difference between the counter-clockwise and clockwise beams at the output side of
the beam splitter in the “upper” configuration is, from eqs. (24) and (27),recalling eqs. (20)-
(21),

ΔφCCW − ΔφCW ≈ 2π

λ

(
2v1,up − 2v4,up

c
l + 2n(n − 1)

v1,up

c
L

)

≈ 2π

λ

{
2ωr

c

hl sin θ

r
+ 2n(n − 1)

[
ΩR cos ωt

c
+

ωr

c

(
cos θ +

h

2r
sin θ

)]
L

}
. (28)
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A.1.4 Michelson’s Experiment of 1925

The effect of eq. (28) was studied by Michelson in 1925 [16] without any glass block, via a
very large, fixed interferometer in, say, the “upper” configuration sketched on p. 8 above.
Michelson compared the phase shift between counterpropagating beams in the very large
interferometer to that at the same time in a much smaller interferometer driven by the same
light source.

In this case, the interferometer(s) are rotating at angular velocity (ω + Ω) sin θ ≈ ω sin θ
about their centers. Our analysis has neglected this effect on path segments 2 and 3, as it
is not relevant for comparison of the fringe pattern of a rotating interferometer at different
times. An analysis including this rotation was given by Silberstein [15], valid for any inter-
ferometer in air/vacuum with any number of straight path segments, finding, for area vector
A, of magnitude hl, that points along the local vertical at the interferometer,8

ΔφCCW − ΔφCW ≈ 8π

λ

ωhl sin θ

c
=

8π ω · A
λc

(29)

which is twice the result of eq. (28) for n = 1.9

A.1.5 Comparison of the “Upper” Configuration at Midnight and Noon

The difference (28) of phase differences implies a shift of the pattern of fringes observed
on the screen of the interferometer, but a single observation does not provide a reference
phase for the pattern. One way to extract information from the fringe pattern is to compare
it for the same configuration of the interferometer (“upper” or “lower”) and midnight and
noon (local time). A shift between these two observed fringe patterns corresponds to, from
eq. (28),

(ΔφCCW −ΔCW)midnight − (ΔφCCW − ΔCW)noon ≈ 8π

λ
n(n − 1)L

ΩR

c
. (30)

As in sec. 2.1.4 above, this effect is related only to the angular velocity Ω of the Earth about
the Sun, and not to the rotation of the Earth about its axis.

A.2 “Lower” Configuration

For the “lower” configuration of the interferometer as sketched on p. 8, the velocities of path
segments 1 and 4 (in the inertial frame of the Sun) in the x′-direction have the forms,

v1,lo = ΩR cos ωt + ωr cos(θ + h/2r) ≈ ΩR cos ωt + ωr

(
cos θ − h

2r
sin θ

)
, (31)

v4,lo = ΩR cos ωt + ωr cos(θ − h/2r) ≈ ΩR cos ωt + ωr

(
cos θ +

h

2r
sin θ

)
. (32)

8See also https://en.wikipedia.org/wiki/Sagnac_effect
9Michelson gave a derivation in [16] more like ours, considering only the rotation ω of the Earth about

its axis, except that he supposed path segments 2 and 3 both pointed to the local North, converging slightly,
such that segment 4 is shorter than segment 1. This indeed doubles the result of eq. (28) for n = 1, but is
something of a “fake” derivation in that if the terms in ΩR were kept they would be quite large, rather than
canceling for n = 1 as in eq. (28).
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which differ from eqs. (20)-(21) by the signs of the terms in path length h.

A.2.1 Counter-Clockwise Beam

A.2.1.1 Paths 2 and 3

As discussed in sec. 2.1.1 above, the transit times of light along paths 2 and 3 are
just Δt2 = Δt3 ≈ h/c to first order in velocity, for both clockwise and counter-clockwise
propagation.

A.2.1.2 Path 4

In the “lower” configuration, segment 4 has x′-velocity (32) with respect to the frame of
the Sun. For counter-clockwise propagation, the travel time Δt4,CCW along this path in the
“lower” configuration of the interferometer is related by,

cΔt4,CCW = l + v4,loΔt4,CCW, Δt4,CCW =
l

c − v4,up
≈ l

c

(
1 +

v4,lo

c

)
. (33)

A.2.1.3 Path 1

In the “lower” configuration, segment 1 has x′-velocity (31) with respect to the frame
of the Sun. Travel along this path is partly in air and partly in glass, so the time Δt1,CCW

along this path in the “lower” configuration of the interferometer is related by,

Δt1,CCW ≈ l − L

c

(
1 − v1,lo

c

)
+

nL

c

(
1 − nv1,lo

c

)
, (34)

as in eq. (15).

A.2.1.4 ΔtCCW and ΔφCCW

The total travel time for counter-clockwise propagation is ΔtCCW = Δt1,CCW + Δt2 +
Δt3 + Δt4,CCW, so the light that arrived at the beam splitter at t = 0 after a round trip
started from the beam splitter at time t = −ΔtCCW, when the splitter was at position
Δx′ = −v1,loΔtCCW. In the “lower” configuration the wave incident on splitter BS1 has the
form ei(−kx′−�t), so the phase of the beam at this earlier position and time was, relative to
the phase of the beam at splitter at time t = 0,

ΔφCCW = kv1,loΔtCCW + kcΔtCCW

=
2π

λ

(
1 +

v1,lo

c

) [
2h + l

(
1 +

v4,lo

c

)
+ (l − L)

(
1 − v1,lo

c

)
+ nL

(
1 − nv1,lo

c

)]

≈ 2π

λ

(
2h + 2l + (n − 1)L +

v1,lo

c
2h +

v1,lo + v4,lo

c
l − n(n − 1)

v1,lo

c
L

)
. (35)

This is also the phase difference between the beam that arrived at splitter BS at time t = 0
after a round trip and the phase of the incident beam at splitter BS at time t = 0.
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A.2.2 Clockwise Beam

A.2.2.1 Paths 2 and 3

Again, the transit times of light along paths 2 and 3 are just Δt2 = Δt3 ≈ h/c to first
order in velocity, for both clockwise and counter-clockwise propagation.

A.2.2.2 Path 4

Clockwise propagation along segment 4 in the “lower” configuration has the same form
as that in sec. 2.2.1 above (but with v4 given by eq. (32); and also eq. (33) with sith sign of
v4 reversed),

Δt4,lo ≈ l

c

(
1 − v4,lo

c

)
. (36)

A.2.2.3 Path 1

Segment 1 has x′-velocity (31) with respect to the frame of the Sun. For clockwise prop-
agation, the time Δt1,CW along this path in the “lower” configuration of the interferometer
is related by,

Δt1,CW ≈ l − L

c

(
1 +

v1,lo

c

)
+

nL

c

(
1 +

nv1,lo

c

)
, (37)

which is that of eq. (34) with the sign of v1,lo reversed.

A.2.2.4 ΔtCW and ΔφCW

The total travel time for clockwise propagation is ΔtCW = Δt1,CW +Δt2 +Δt3 +Δt4,CW,
so the light that arrived at the beam splitter at t = 0 after a round trip started from the
beam splitter at time t = −ΔtCW, when the splitter was at position Δx′ = −v1,loΔtCW. In
the “lower” configuration the wave incident on splitter BS1 has the form ei(−kx′−�t), so the
phase of the beam at this earlier position and time was, relative to the phase of the beam
at splitter at time t = 0,

ΔφCW = kv1,loΔtCW + kcΔtCW

=
2π

λ

(
1 +

v1,lo

c

) [
2h + l

(
1 − v4,lo

c

)
+ (l − L)

(
1 +

v1,lo

c

)
+ nL

(
1 +

nv1,lo

c

)]

≈ 2π

λ

(
2h + 2l + (n − 1)L +

v1,lo

c
2h +

3v1,lo − v4,lo

c
l + n(n − 1)

v1,lo

c
L

)
. (38)

This is also the phase difference between the beam that arrived at splitter BS at time t = 0
after a round trip and the phase of the incident beam at splitter BS at time t = 0.

A.2.3 ΔφCCW − ΔφCW

The phase difference between the counter-clockwise and clockwise beams at the output side
of the beam splitter in the “lower” configuration is, from eqs. (35) and (38), and recalling
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eqs. (31)-(32),

ΔφCCW − ΔφCW ≈ 2π

λ

(
2v4,lo − 2v1,lo

c
l − 2n(n − 1)

v1,lo

c
L

)
(39)

≈ 2π

λ

{
2ωr

c

hl sin θ

r
− 2n(n − 1)

[
ΩR cos ωt

c
+

ωr

c

(
cos θ − h

2r
sin θ

)]
L

}
.

Again, the plus(minus) signs before ω apply at midnight(noon).

A.2.4 Comparison of the “Upper” and “Lower” Configurations

The difference (28) of phase differences implies a shift of the pattern of fringes observed on
the screen of the interferometer, but a single observation does not provide a reference phase
for the pattern. One way to extract information from the fringe pattern is to compare the
“upper” and “lower” configurations of a rotating interferometer one-half turn apart. A shift
between these two observed fringe patterns corresponds to, from eqs. (28) and (39),

(ΔφCCW − ΔCW)upper − (ΔφCCW − ΔCW)lower ≈ 8π

λ
n(n − 1)L

(
ΩR cos ωt

c
+

ωr

c
cos θ

)
.(40)

This is double the result of eq. (19).
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