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The theme of this note is that if one wishes to make a “Helmholtz” decomposition,
eqs. (1)-(2) below, for electromagnetic (or other) fields one should generally not use the form
(7) below of “Helmholtz’ theorem”, but rather use an argument of Stokes (and Maxwell) to
arrive at a “Helmholtz” decomposition of the form (3)-(4). That is, eq. (7) is not generally
expeditious as a method of computing a vector field, although it remains that “Helmholtz’
theorem” was historically important in clarifying that a vector field can, in principle, be
determined from knowledge of its curl and divergence.

On pp. 9-10 of [1] (1849), Stokes demonstrated what is now often called the “Helmholtz”
decomposition, that “any” (differentiable) vector field, say F, can be decomposed as,

F = Firr + Frot, (1)

where the irrotational and rotational components [2], Firr and Frot, obey,

∇× Firr = 0, and ∇ · Frot = 0. (2)

Stokes noted that if ∇ · F = ρ and the scalar field V obeys Poisson’s equation, ∇2V = −ρ,
then,

Firr = −∇V, Frot = F − Firr = F + ∇V, (3)

with

V (r) =

∫
ρ(r′)

4π |r − r′| d3r′. (4)

There is no requirement that the field F vanish at infinity, but the scalar potential V must
be computable. Examples of fields that are nonzero at infinity with a decomposition (1)-(2)
include transverse plane waves, and the fields of an infinite solenoid that carries a linearly
rising current [3].

These simple results seem not to be well known. Rather, the decomposition (1)-(2)
is commonly associated with Helmholtz (1858) [4], who discussed the velocity field u for
incompressible fluids, where ∇ ·u = 0 and uirr = 0. Helmholtz did not cite Stokes’ argument
(while appearing to use a version of it), discussed our eq. (7) but not (6), and did not
explicitly state the decomposition (1).

Stokes also stated, in his eq. (13) and the un-numbered equation just before his eq. (16),
that Frot = ∇× A where A(r) =

∫ ∇′ × F(r′) d3r′/4π |r − r′|, with the implication that,

F = −∇V + ∇ × A. (5)

It was not explicitly stated by Stokes, but it follows that (see eqs. (2) and (5a) of [4]),

Firr(r, t) = −∇V = −∇
∫ ∇′ · F(r′, t)

4π |r− r′| d3r′, (6)

Frot(r, t) = ∇ × A = ∇ ×
∫ ∇′ × F(r′, t)

4π |r − r′| d3r′. (7)
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Our eqs. (1)-(2) and (6)-(7) are commonly called “Helmholtz’ theorem”, although Helmholtz
seems not to have stated it explicitly.

Parts of Stokes’ argument were repeated by Maxwell (without attribution) in Theorem
VI, p. 61 of [5] (1856). “Helmholtz theorem” was discussed, but not by name, in sec. 98,
p. 33 of [6] 1881), where Gibbs wrote,

Firr(r, t) = − 1

4π
New∇ · F =

∫
(r − r′) [∇′ · F(r′, t)]

4π |r − r′|3 d3r′, (8)

Frot(r, t) =
1

4π
Lap∇× F = −

∫
(r − r′) × [∇′ × F(r′, t)]

4π |r − r′|3 d3r′. (9)

Heaviside gave versions of both our eqs. eqs. (3)-(4) and our eqs. (6)-(7), using his operator
“Pot”, in [7] (1892), reprinted as §134, p. 206 of [8]. Another early mention of “Helmholtz’
theorem”, also not by name, is in §23, pp. 188-191 of [9] (1896), where Stokes’ paper was
cited. An early reference to “Helmholtz theorem” by that name is in § 71, p. 155 of [10]
(1909).

Relatively short “proofs” of “Helmholtz’ theorem” typically assume that the field F
vanishes at infinity. Some people claim that eqs. (6)-(7) hold only for fields that vanish
faster than 1/r at infinity (see, for example, Appendix B of [11]) [12], although it was shown
in 1905 [16] that “Helmholtz’ theorem” holds for any (differentiable) vector field that vanishes
at infinity (i.e., falls off as 1/rε with ε > 0); for a review in English, see [17, 18]. This does
not exclude that the theorem holds for many fields that are nonzero at infinity.

As an application of the above (not made by Maxwell), we consider the electromagnetic
fields E and B, which obey the Maxwell equations,

∇ ·E =
ρ

ε0
, ∇ · B = 0, (10)

where ρ is the electric charge density and ε0 is the permittivity of the vacuum. Then, we
have that,

Eirr = ECoulomb, Erot = E − ECoulomb, Birr = 0, Brot = B, (11)

where the instantaneous Coulomb field is related by,

∇ · ECoulomb =
ρ

ε0
, ∇ × ECoulomb = 0, (12)

ECoulomb = −∇VCoulomb, VCoulomb(r, t) =

∫
ρ(r′, t)
4πε0

d3r′. (13)

For static fields, E = ECoulomb = Eirr, and Erot = 0. For source-free electromagnetic fields,
such as infinite plane waves, Eirr = 0 and Erot = E. The “Helmholtz” decomposition for the
electric field of an oscillating, “point” (Hertzian) electric dipole is given in Appendix A.1 of
[19].
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