The Fractal Dimension of a Ball of Aluminum Foil

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(March 6, 1997)

1 Problem

If a sheet of aluminum foil is crumpled into a ball, the mass at radius less than \(r \) can be taken as \(kr^D \) where \(D \) will lie between 2 and 3. We may call \(D \) the fractal (Haussdorff) dimension of the crumpled aluminum ball. (In practice the above relation could only hold for \(r \) larger than the thickness of the foil.)

Explain how the fractal dimension \(D \) could be determined from knowledge of the velocity \(v \) attained by the ball upon rolling without slipping down an incline of height \(h \). Ignore air resistance, rolling friction, etc.

(A standard model of crumpling predicts \(D = 2.5 \).)

2 Solution

We need some other property of the ball that depends on the fractal dimension \(D \). The moment of inertia \(I \) about a diameter suggests itself,

\[
I = 2\pi \int_0^R \int_0^\pi \rho(r)r^2 \sin \theta dr d\theta \quad r^2 \sin^2 \theta,
\]

where the density \(\rho(r) \) is related by,

\[
\rho = \frac{1}{4\pi r^2} \frac{dm}{dr} = \frac{Dkr^{D-3}}{4\pi}.
\]

Hence, the moment of inertia is,

\[
I = \frac{2}{3} DMR^2.
\]

For the rolling experiment, conservation of energy tells us that,

\[
Mgh + \frac{1}{2}I\omega^2 + \frac{1}{2}Mv^2,
\]

where the condition of rolling without slipping is \(\omega = v/r \). Combining things, we find,

\[
\frac{D}{D+2} = \frac{3}{2} \left(\frac{2gh}{v^2} - 1 \right).
\]