Nonperiodic Tiling

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(January 27, 2024)
The article "Escher Sketch" [1] considered only periodic tilings of a plane with a single type of tile. ${ }^{1}$ Already in 1976, Penrose had demonstrated nonperiodic tilings, based on 2 different tiles [2, 3, 4]. Recently, nonperiodic tilings with only a single (14-sided) tile have been demonstrated $[5,6]$.

References

[1] K. McDonald, Escher Sketch, JACG Newsletter 4(11), 18 (1985), http://kirkmcd.princeton.edu/examples/escher.pdf
[2] R. Penrose, Set of Tiles for Covering a Surface, US Patent 4,133,152 (filed Jan. 24, 1976), http://kirkmcd.princeton.edu/examples/patents/penrose_us4133152_76_tiles.pdf
[3] R. Penrose, Pentaplexity, Eureka No. 39, 16 (1978), http://kirkmcd.princeton.edu/examples/mechanics/penrose_eureka_39-apr_16_78.pdf
[4] R. Penrose, Pentaplexity, Math. Intell. 232 (1979), http://kirkmcd.princeton.edu/examples/mechanics/penrose_mi_2_32_79.pdf
[5] D. Smith et al., An aperiodic monotile (May 2023), https://arxiv.org/abs/2303.10798
[6] D. Smith et al., A chiral aperiodic monotile (May 2023),
https://arxiv.org/abs/2305.17743

[^0]
[^0]: ${ }^{1}$ Of course, each tile can be partitioned into many subtiles. Several of the illustrations of the 17 basic types of periodic tilings in [1] were shown with 2 subtiles.

