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1 Problem

A common statement of the Equivalence Principle is that physics inside a box in a uniform
gravitational field of 1 g, such as that at the surface of the Earth, is equivalent to that inside
a box in zero gravitational field that is accelerating at 1 g.

However, if the box accelerated at 1 g ≈ 9.8 m/s2 for 1 year (≈ π×107 s), its speed would
be v = gt ≈ 9.8 × π × 107 ≈ 3 × 108 m/s, which is the speed c of light. But, a box cannot
go faster than the speed of light, so this suggests that the Equivalence Principle holds only
for one year, after which it is invalid.

Does this argument really show that the Equivalence Principle is bogus?

2 Solution

The key issue is that for an acceleration of the box to be equivalent to a gravitational field
acting on it, the constant acceleration must be relative to the box, rather than, say, to an
inertial observer outside the box.

Constant acceleration of the box relative to such an inertial observer would not seem
constant relative to an observer inside the box. And, constant acceleration of the box
relative to the box itself would not seem constant relative to an inertial observer outside the
box.

Acceleration, like velocity, is a relative concept.1

We now go into some details to support the above statements.

2.1 “Uniformly” Accelerated Motion with Respect to an Inertial

Frame

“Uniform” acceleration of an object relative to an inertial lab frame does not mean constant
acceleration a, as this would imply faster-than-light motion of the object for time t > c/a,
assuming the object started from rest at t = 0. The constant acceleration of the object
would cease after this time, so this acceleration could not be called “uniform”.

Rather, we suppose (following Born [2]) that the acceleration is uniform with respect to
the instantaneous inertial rest frame of the accelerated object. Quantities in this frame will
be designated with the superscript �. From sec. 10 of Einstein’s first paper on relativity [3] we
have that for acceleration parallel to the velocity v of an object, the acceleration a = dv/dt

1Acceleration is independent of the observer in Galilean relativity. Additional discussion of this theme
is given in [1].
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in the inertial lab frame is related to that, a� = dv�/dt�, in the instantaneous inertial rest
frame according to,

a =
dv

dt
= (1 − v2/c2)3/2dv�

dt�
=

a�

γ3
, where γ =

1√
1 − v2/c2

. (1)

In this, two powers of
√

1 − v2/c2 come from the transformation of relative velocity, and
another comes from time dilation.

For uniform acceleration, a� = constant (not a = constant), eq. (1) can be integrated
to find the velocity v. Then, the acceleration a in the lab frame is related to that in the
instantaneous inertial rest frame of the box according to,

v√
1 − v2/c2

= a�t, v =
dz

dt
=

a�t√
1 + a�2t2/c2

, a =
dv

dt
=

a�(1 − v2/c2)√
1 + a�2t2/c2

, (2)

supposing that v = 0 when t = 0. As t → ∞, v → c. Note that the acceleration a in
the inertial lab frame decreases with time (for t > 0), although the acceleration a� in the
instantaneous inertial rest frame of the box is constant.

Integrating eq. (2) we obtain,

z = z0 +
c2

a�

(√
1 + a�2t2/c2 − 1

)
, (3)

where z0 is the z-coordinate of the box at time t = 0. The (proper) time t� on a clock carried
inside the accelerating box is related by,

dt� = dt
√

1 − v2/c2 =
dt√

1 + a�2t2/c2
, (4)

and hence,

t� =
c

a�
sinh−1 a�t

c
, t =

c

a�
sinh

at�

c
. (5)

Using this, eqs. (2) and (3) can be rewritten as,

v = c tanh
a�t�

c
, and z = z0 +

c2

a�

(
cosh

a�t�

c
− 1

)
. (6)

As such, uniformly accelerated motion is often called “hyperbolic motion”.2,3

Finally, we note that for times such that |a�t| � c, the position is well approximated by
the Newtonian form,

z ≈ Z +
a�t2

2
(|a�t| � c). (7)

2Hyperbolic motion appears to have been first discussed briefly by Minkowski [4], and then more fully
by Born [2] and Sommerfeld [5].

3An object that extends from z1 to z2 when at rest at time t = 0 has extent |z2 − z1| at all other times
when all points in the object are subject to the same, uniform acceleration; there is no Lorentz contraction
according to lab-frame observers for this type of uniform acceleration of an extended object.
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2.2 Constant Acceleration with Respect to the Inertial Lab Frame

We again consider a box that is somehow accelerated with respect to the inertial lab frame
with constant acceleration a = g ẑ, starting from rest at the origin at time t = 0. Then, with
respect to the lab frame,

v = gt, z = gt2/2 , γ(t) =
1√

1 − (gt/c)2
(0 < t < c/g) . (8)

These relations hold only for times 0 < t < c/g, as the the box would reach the speed of
light at time t = g/c, and have infinite kinetic energy with respect to the lab frame, which
would require an infinite energy from the source of the acceleration.

In the instantaneous inertial rest frame (the � frame) of the box at lab-frame time 0 <
t < c/g, the acceleration is,

a� = γ3(t)g, (9)

recalling eq. (1). As t → c/g in the inertial lab frame, the acceleration a� in the instantaneous
rest frame of the box goes to infinity, as does the energy required to maintain this acceleration.

If a = g = 980 cm/s2, then the time t = c/g at which the box’s velocity reaches c in the
inertial lab frame is approximately 1 Earth year, and the distance gt2/2 = ct/2 that the box
has traveled in this frame is approximately 1/2 light year.

The apparent weight of, say, a person of mass m inside the box is ma� = γ3(t)mg, which
increases with time. The person would soon feel his weight to be increasing, and would know
that the box is not in a uniform gravitational field.
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A Appendix: Uniformly Accelerated Reference Frame

A set of uniformly accelerated observers can be used to define a uniformly accelerated refer-
ence frame. However, the distance between observers in a “rigid” frame must be independent
of time in that frame.4 If we use the set of observers with equal spacing in the inertial lab
frame at all times during their accelerated motion according to eq. (6), the distance between
observers would vary with time in the accelerated frame.5

An appropriate coordinate system (x′, y′, z′, t′) for a “rigid” frame whose origin has ac-
celeration g with the respect to the z-axis of the inertial lab frame is defined by eq. (140),
sec. 97 of [8],6

x = x′, (11)

y = y′, (12)

z =

(
z′ +

c2

g

)
cosh

g ct′

c2
− c2

g
, (13)

ct =

(
z′ +

c2

g

)
sinh

g ct′

c2
. (14)

It is useful to note that according to eqs. (13)-(14),

cosh
gt′

c
=

√
1 +

(
gct

gz′ + c2

)2

, (15)

z =
gz′ + c2

g

√
1 +

(
gct

gz′ + c2

)2

− c2

g
, (16)

from which we obtain the velocity v in the lab frame of a point at constant z′ in the accelerated
frame as,

v =
dz

dt
=

gc2t

(gz′ + c2)

√
1 +

(
gct

gz′+c2

)2
= c tanh

gt′

c
. (17)

4In general relativity, any definition of a reference frame is valid, and a set of uniformly accelerated
observers with equal spacings at all times in the inertial lab frame does define a reference frame, which is
preferred by some authors, as in [6]. Here, we work in the spirit of special relativity, where reference frames
are “rigid”.

5Einstein missed this issue in his first discussion of accelerated motion in 1907 [7], as he only considered
accelerated observers with velocities, relative to an inertial frame, that were small compared to the speed
of light. However, Einstein did note that accelerated clocks at different positions run at different rates with
respect to the inertial frame.

6These coordinates obey the metric,

ds2 = dx2 + dy2 + dz2 − c2
(
1 +

gz

c2

)2

dt2, (|z| < c2/g), (10)

where g = 2πGρ, G is Newton’s gravitational constant and ρ is the density of mass/energy. See, for example,
sec. 97 of [8]. This metric is often used to describe a weak gravitational field.

The metric (10) may have been first used by Kottler (1914) [9], and more clearly in sec. VII of [10].
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Note that,

√
1 − v2/c2 =

1

cosh gt′/c
, (18)

The (inertial) lab-frame acceleration of a point at constant z′ is,

a =
dv

dt
=

g

1 + gz′/c2

1[
1 +

(
gct

gz′+c2

)2
]3/2

=
g

1 + gz′/c2

1

cosh3 gt′
c

=
g(1 − v2/c2)3/2

1 + gz′/c2
. (19)

Recalling eq. (1) we see that the acceleration of point z′ in its instantaneous inertial rest
frame is,

a� =
g

1 + gz′/c2
, (20)

which depends on the position z′ in the accelerated frame. This further emphasizes the
difference between a “rigid” accelerated frame and a collection of observers whose acceleration
is the same in the lab frame.

The distance between nearby points in the accelerated frame, as measured at a fixed time
t in the lab frame, follows from eq. (16),

dz =
dz′

cosh gt′/c
=

√
1 − v2/c2 dz′ (constant t). (21)

Lab-frame observers find that, at time t, lengths in the “rigid” accelerated frame are Lorentz
contracted, as expected, according to their instantaneous lab-frame velocity v, when the
measurements are made at constant t.

Similarly, observers in the accelerated frame at time t′ of a small length dz′ find that
corresponding length dz in the lab frame is related according to eq. (13) by,

dz = dz′ cosh
gt′

c
=

dz′√
1 − v2/c2

(constant t′). (22)

That is, the lengths of objects in the lab frame are all also Lorentz contracted, when observed
from the “rigid” accelerated frame at constant t′.

The relation between time intervals in the lab and accelerated frames for clocks at fixed
z′ follows from eq. (14) as,

dt(z′) = dt′
(

1 +
gz′

c2

)
cosh

gt′

c
=

dt′(z′)√
1 − v2/c2

(
1 +

gz′

c2

)
(constant z′), (23)

In particular a clock at z′ = 0 is related by the time dilation,

dt0 =
dt′0√

1 − v2/c2
. (24)
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As all clocks in the inertial lab frame run at the same rate, we can take dt(z′) = dt0 to find,

dt′(z′) = dt′0

(
1 +

gz′

c2

)
. (25)

That is, clocks at larger z′ in the accelerated frame run faster than clocks at smaller z′,
relative to clocks in the inertial lab frame, as noted by Einstein in 1907 [11].

Likewise, using eq. (13) to eliminate z′ from eq. (14) in favor of z, we find,

t =
gz + c2

cg
tanh

gt′

c
, (26)

and hence,

dt = dt′
(
1 +

gz

c2

) 1

cosh2 gt′/c
= dt′

(
1 − v2

c2

) (
1 +

gz

c2

)
(constant z), (27)

Clocks at fixed z appear to observers in the accelerated from to run slow (time dilation), but
by a factor 1 − v2/c2 rather than

√
1 − v2/c2. In addition, this time-dilation factor varies

with the coordinate of the clock in the lab frame.
For completeness we note that eqs. (13) and (26) can be combined to give,

1

cosh gt′/c
=

√
1 −

(
gct

gz + c2

)2

, (28)

z′ =
z + c2/g

cosh gt′/c
− c2

g
=

gz + c2

g

√
1 −

(
gct

gz + c2

)2

− c2

g
, (29)

The inverses of transformations of (11)-(14) are,

x′ = x, (30)

y′ = y, (31)

z′ =

√(
z +

c2

g

)2

− c2t2 − c2

g
, (32)

ct′ =
c2

g
tanh−1

(
ct

z + c2/g

)
. (33)

B Appendix: Bell’s Spaceship Paradox

An interesting example of the difference between a “rigid” accelerated frame and a collection
of observers with the same lab-frame accelerations was given by Dewan and Beran [12, 13],
and popularized by Bell [14].

Here, two spaceships move, with a rope connecting them, along the z-axis with identical
accelerations and constant separation dz for any time t in the inertial lab frame. Then,
according to eq. (21), the separation of the spaceships in the accelerated frame of, say, the
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left spaceship is dz′ = dz/
√

1 − v2/c2 > dz. In the frame of either of the spaceships the rope
appears to be stretched, and eventually breaks.

This result is very disconcerting to those who think that the spaceships define a “rigid”
accelerated frame, in which the distance between two points would be independent of time.
But, as discussed around eq. (22), the distance between the spaceships is increasing in the
“rigid” accelerated frame associated with either of the spaceships, so it should be no surprise
that the rope eventually breaks.

According to the Equivalence Principle, a uniformly accelerated frame is equivalent to a
frame at rest in a uniform gravitational field. An object at rest in a uniform gravitational
field has a constant length, as does an object in a uniformly accelerated frame (according to
observers in that frame). However, many people seem to suppose that the two spaceships
in Bell’s paradox define a uniformly accelerated frame, in which case the rope should not be
expected to break. Or, if one accepts that the rope breaks, but one supposes that the two
spaceships define a uniformly accelerated frame, then according to the Equivalence Principle,
a rope suspended at rest in a uniform gravitational field would be expected to break after a
while.

These paradoxes reinforce the insight of Appendix A that a uniformly accelerated frame
is not a collection of observers with the same acceleration in the inertial lab frame.7

C Appendix: Additional Remarks

C.1 Comments by Einstein on the Equivalence Principle

In 1920, Einstein [43] recalled his invention of the Equivalence Principle: When I was busy
(in 1907) writing a summary of my work on the theory of special relativity for the Jahrbuch
für Radioaktivität und Elektronik [11], I also had to try to modify the Newtonian theory of
gravitation such as to fit its laws into the theory. While attempts in this direction showed
the practicability of this enterprise, they did not satisfy me because they would have had to
be based upon unfounded physical hypotheses. At that moment I got the happiest thought
of my life in the following form:

In an example worth considering, the gravitational field has a relative existence only in a
manner similar to the electric field generated by magneto-electric induction. Because for an
observer in free-fall from the roof of a house there is during the fall – at least in his immediate
vicinity – no gravitational field. Namely, if the observer lets go of any bodies, they remain
relative to him, in a state of rest or uniform motion, independent of their special chemical
or physical nature. The observer, therefore, is justified in interpreting his state as being “at
rest”.

Einstein’s first published statement of the Equivalence Principle was at the end of sec. 17
of [11] (1907): we ... assume the complete physical equivalence of a gravitational field and a
corresponding acceleration of the reference system.8

7Additional commentaries on this theme, of possible amusement, are in [15]-[37]. A related debate on
the acceleration of extended objects can be traced in [38]-[42].

8Some people, perhaps including Einstein (see, for example, [46]), interpret the “complete physical
equivalence” to mean that there could be no physical system without a gravitational field. Others consider
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Einstein’s second published statement of the Equivalence Principle (1911) was at the
end of sec.1 of [44]: By theoretical consideration of processes which take place relative to a
system of reference with uniform acceleration, we obtain information as to the behavior of
processes in a homogeneous gravitational field.

Einstein’s comments on the Equivalence Principle in sec. 2 of his 1916 review of general
relativity [45] include: Let K′ be a second system of reference which is moving relative to
K in uniformly accelerated translation. Then relative to K′, a mass sufficiently distant from
other masses would have an accelerated motion such that its acceleration and direction of
acceleration are independent of the material composition and physical state of the mass.

Does this permit an observer at rest relative to K′ to infer that he is on a “really”
accelerated system of reference? The answer is in the negative; for the above-mentioned
of freely movable masses relative to K′ may equally well be interpreted in the following
way. The system of reference K′ is unaccelerated, but the space-time territory in question is
under the sway to a gravitational field which generates the accelerated motion of the bodies
relatively to K′.

This view is made possible for us by the teaching of experience of the existence of a field
of force, namely the gravitational field, which possesses the remarkable property of imparting
the same acceleration to all bodies.
Here, Einstein supposes that the acceleration due to gravity of a mass is independent of the
velocity of the mass, even though he had shown that in his theory the gravitational deflection
of light is twice the “Newtonian” value (sec. 22 of [45]).

C.2 Limitations to the Equivalence Principle

The equivalence applies only locally, not globally, as nonuniform gravitational fields exist.9

This was noted briefly in Einstein’s above comments of 1920 [43].
A feature which is seldom mentioned is that the version of the Equivalence Principle

which states that the acceleration due to gravity is independent of the “physical state of the
mass” applies only to the behavior of objects with speeds much less than that of light. See,
for example, [47], which reviews how the acceleration of an object due to gravity depends
on the velocity of the object, and how the force of gravity for radial motion with vr > c/

√
3,

with respect to a spherical source, is repulsive rather than attractive.

C.3 Some Consequences of the Equivalence Principle

A consequence of the Equivalence Principle is that an observer at rest with respect to the
source of a gravitational field is equivalent to an accelerated observer in zero gravity.10

that there could be spacetime without a gravitational field, namely “flat” spacetime in which there is no
curvature (zero Ricci scalar = zero gravity). The comments below reflect the latter attitude.

9Nonuniform gravitational fields are often said to generate “tidal forces”, which vary with position in
space. The Equivalence Principle for a nonuniform gravitational field holds only to the extent that these
“tidal forces” are negligible to the local observer.

10As noted above, we take “zero gravity” to mean “zero Ricci scalar”, which includes the idealization of
a completely uniform “gravitational” field. In this view, the Equivalence Principle is somewhat trivial when
applied to a uniform “gravitational” field, which is simply an interpretation of flat spacetime by a uniformly
accelerated observer.
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Einstein’s “happy thought” of 1907 was that an observer in free fall in gravity (who is
accelerated with respect to an observer at rest in the gravity) is equivalent to an inertial
observer in zero gravity.11

(The next two paragraphs summarize results from sec. 2 above.) Note also that if the
acceleration of gravity is g at some point at rest in a gravitational field, then the equivalent
acceleration in zero gravity is g according to an accelerated observer in an inertial frame,
rather than according to an inertial observer. Since the g of gravity could be static, and last
forever, it cannot correspond to a constant acceleration g with respect to an inertial frame
in zero gravity, which would imply eventual speeds faster than light.

That is, constant acceleration with respect to an inertial frame in zero gravity is not
equivalent to a constant/uniform gravitational field.12

Observers at rest in an inertial frame maintain a constant distance between one another.
Observers in free fall in uniform gravity keep a constant distance between one another,

if they start falling from rest at the same moment/time.
Observers in zero gravity who start from rest at the same time in some inertial frame,

and are accelerated uniformly, maintain a constant separation according to observers in the
original inertial frame. However, according to the accelerated observers, their separation
increases with time. This is Bell’s spaceship paradox, discussed in Appendix B above.
Furthermore, the distance between two objects at rest in the inertial frame (along a line
parallel to the acceleration vector) appears to decrease with time according to the accelerated
observer, as discussed in Appendix A above.

C.4 Two Objects Accelerated with Respect to an Inertial Frame

Two objects can accelerate with respect to an inertial frame in zero gravity, with constant
a = g in their accelerated frames, such that the distance between the two objects remains
constant with respect to the inertial frame. However, the distance between these two objects
is not constant with respect to their accelerated frames (which are different for the two
objects).

The equivalent of this is two objects that remain at rest, with constant separation, in a
constant/uniform gravitational field of g.

C.5 Two Objects at Rest in an Inertial Frame

The equivalent of objects in an inertial frame in zero gravity is free-falling objects in gravity.
The equivalent of the two objects in an inertial frame in zero gravity having constant

separation is that they free fall in gravity such that their separation is constant in their
own free-falling frames. This does not mean that their separation is constant with respect
to observers at rest in gravity (which are the equivalents of accelerated observers in zero

11Not all observers who are accelerated with respect to observers who are at rest in gravity are equivalent
to inertial observers in zero gravity. Only free-falling observers in gravity are equivalent to inertial observers
in zero gravity.

12Constant acceleration with respect to an inertial frame in zero gravity is not equivalent to a con-
stant/uniform gravitational field.
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gravity). Recall from Appendix A above that according to an accelerated observer in zero
gravity of two objects at rest in an inertial frame, their separation decreases as their velocity
relative to the accelerated observer increases in magnitude. Hence, the equivalent is that the
separation of the free falling objects decreases as they fall, according to observers at rest in
the gravity. This mean that the “upper” object started free falling earlier than the “lower”
object.

D Appendix: Uniform Gravitational Field13

The notion of a uniform gravitational field is somewhat elusive. If one associates gravi-
tational fields with sources of mass/energy, then physical gravitational fields are typically
associated with distortions of spacetime.14 On the other hand, the equivalence principle im-
plies that a uniformly accelerated reference frame in flat spacetime should be equivalent to
a uniform gravitational field. Of course, a uniform field over all spacetime is a mathematical
idealization, such that there is room for discussion as to the relevant physical approximation
to this concept. Lengthy debate on this topic may or may not have converged, but present
wisdom seems to be that reasonably physical assumptions as to the sources of a uniform
gravitational field are consistent with it being associated with flat spacetime [11],[54]-[65].

Often a weak, uniform gravitational is taken to be described by the metric,15

ds2 = dx2 + dy2 + dz2 − c2
(
1 +

gz

c2

)2

dt2, (|z| < c2/g), (34)

where g = 2πGρ, G is Newton’s gravitational constant and ρ is the density of mass/energy.
See, for example, sec. 97 of [8].

For spacetime described by the static metric (34), electrodynamics obey Maxwell’s equa-
tion with the alterations that the vacuum has relative permittivity and permeability given
by, ε = μ =

1

1 + gz/c2
, (35)

as discussed, for example, in sec. 90 of [48]. A consequence is that the speed, u, of light

13This Appendix is transcribed from secs. secs. 2.2-3 of [66].
14These distortions are often called “curvature”, but in the case of hypothetical “cosmic strings” and

“domain walls” [50, 51] spacetime is flat with topological defects. Vacuum “domain walls” are not physically
viable, but remain an interesting theoretical construct.

15The metric (34) may have been first used by Kottler (1914) [9], and more clearly in sec. VII of [10].
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emitted at z = 0 is a function of z according to,16,17

u(z) = c
(
1 +

gz

c2

)
. (36)

If we approximate a uniform gravitational field by that at the surface of the Earth, then
the symbol g in eq. (36) becomes, approximately, g0(1 − z2/2R2

E) where g0 = GME/R2
E ,

G is Newton’s gravitational constant, ME and RE are the mass and radius of the Earth,
respectively.

D.1 Does a Uniform Gravitational Field Have a Source?

Using coordinates (x0, x1, x2, x3) = (ct, x, y, z), the metric tensors gij and gij corresponding
to eq. (34) have nonzero components,18

g00 =
1

g00
= f2(z) =

(
1 +

gz

c2

)2

, g11 = g22 = g33 = g11 = g22 = g33 = −1, (37)

such that gik gjk = δj
i . The nonzero Christoffel symbols are,

Γi,jk = Γi,kj =
1

2

(
∂gij

∂xk
+

∂gik

∂xj
− ∂gjk

∂xi

)
, Γ0,03 = Γ0,30 = −Γ3,00 = f

df

dz
≡ ff ′. (38)

The Riemann curvature tensor has nonzero components,

Rijkl =
∂Γi,jl

∂xk
− ∂Γi,jk

∂xl
+ gmnΓi,mkΓn,jl − gmnΓi,mlΓn,jk, (39)

R0330 = R3003 = −R0303 = −R3030 = ff ′′. (40)

16Equation (36) appears near the end of Einstein’s 1907 paper [11].
17Our brief discussion avoids the issue of variation with z of the rate of clocks in a uniform gravitational

field. However, the metric (34) indicates that a clock (that reads time t) at position z has proper time
interval dτ = (1 + gz/c2)dt, such clock at z > 0 runs slower compared to proper time than a clock at z = 0.
Hence, reporting the speed of light at position z > 0 as u(z) = dz/dt = (dz/dτ)(dτ/dt) = c (1 + gz/c2) gives
a value larger than c. If light is emitted in the +z-direction at z = −c2/g its initial speed is zero according
to eq. (36), such that it takes an infinite time interval Δt to reach z = 0, and we speak of z = −c2/g as the
“event horizon” for the observer at z = 0. However, an observer at z = −c2/g could consider that the light
has local speed c, and the metric to be eq. (34) with z replaced by z+c2/g, such that the speed of light varies
with z according to u(z) = c (1 + g(z + c2/g)/c2) = c (2 + gz/c2), and the event horizon for this observer
is z = −2c2/g. Similarly, an observer at z = c2/g who considers the local speed of light to be c concludes
that light emitted at z = 0 takes an infinite time to reach him, so that in effect an observer at z = 0 cannot
communicate with one at z = c2/g. Hence, we say that the metric (34) is valid only for |z| < c2/g.

Another way to see this is to note that the gravitational redshift brings the energy of any photon emitted
at z = 0 to zero at z = c2/g [52], so there is no meaningful physical interaction possible between an observer
at z = 0 and one at z > c2/g.

A universe with a uniform gravitational field is effectively partitioned into regions of extent Δz = ±c2/g
around any observer. Each observer cannot know about the rest of the universe outside this domain. That is,
early cosmological visions that assumed a flat Earth and “turtles all the way down” were actually consistent
with general relativity.

18For the general case of symmetric metric tensors, see prob. 2, sec. 92 of [48].

11



The Ricci tensor has nonzero components,

Rij = gklRkilj , R00 = ff ′′, R33 = −f ′′

f
. (41)

The Ricci curvature scalar is,19

R = gijRij =
2f ′′

f
. (42)

Einstein’s gravitational equations are,

8πG

c4
Tij = Rij − gijR, (43)

T00 = − c4

8πG
ff ′′, T11 =

c4

4πG

f ′′

f
T22 =

c4

4πG

f ′′

f
T33 =

c4

8πG

f ′′

f
. (44)

Hence, the choice f(z) = 1 + gz/c2, for which f ′′ = 0, implies that the stress-energy tensor
Tij is everywhere zero. The “uniform gravitational field” corresponding to the metric (37)
has no source, or spacetime curvature, and is only a kind of “coordinate force” akin to the
centrifugal force and the Coriolis force.20,21

Requiring a uniform gravitational field to have an infinite planar source and flat spacetime
apparently leads to metrics with spatial anisotropy. See, for example, [50, 54],[60]-[65].
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[11] A. Einstein, Über das Relativitätsprinzip und die aus demselben gezogene Folgerungen,
Jahrb. Radioakt. Elektron. 4, 411 (1907); corrections in 5, 98 (1908),
http://kirkmcd.princeton.edu/examples/GR/einstein_jre_4_411_07.pdf

English translation with commentary in H.M. Schwartz, Einstein’s comprehensive 1907
essay on relativity, Am. J. Phys. 45, 512, 811, 899 (1977),
http://kirkmcd.princeton.edu/examples/GR/einstein-schwartz_ajp_45_512_77.pdf

translated as On the relativity principle and the conclusions drawn from it, in The col-
lected papers of Albert Einstein. Vol. 2: The Swiss years: writings, 1900-1909 (Princeton
U. Press, 1989), http://kirkmcd.princeton.edu/examples/GR/einstein_jre_4_411_08_english.pdf

[12] E. Dewan and M. Beran, Note on Stress Effects due to Relativistic Contraction, Am. J.
Phys. 27, 517 (1959), http://kirkmcd.princeton.edu/examples/GR/dewan_ajp_27_517_59.pdf

[13] E. Dewan and M. Beran, Stress Effects due to Lorentz Contraction, Am. J. Phys. 31,
383 (1963), http://kirkmcd.princeton.edu/examples/GR/dewan_ajp_31_383_63.pdf

[14] J.S. Bell, How to Teach Special Relativity, Prog. Sci. Cult. 1 (2), 1 (1976),
http://kirkmcd.princeton.edu/examples/GR/bell_psc_1_2_1_76.pdf

[15] A.A. Evett and R.K. Wangsness, Note on the Separation of Relativistically Moving
Rockets, Am. J. Phys. 28, 556 (1960),
http://kirkmcd.princeton.edu/examples/GR/evett_ajp_28_566_60.pdf

13



[16] P.J. Nawrocki, Stress Effects due to Relativistic Contraction, Am. J. Phys. 30, 771
(1962), http://kirkmcd.princeton.edu/examples/GR/nawrocki_ajp_30_771_62.pdf

[17] J.E. Romain, A Geometrical Approach to Relativistic Paradoxes, Am. J. Phys. 31, 576
(1963), http://kirkmcd.princeton.edu/examples/GR/romain_ajp_31_576_63.pdf

[18] A.A. Evett, A Relativistic Rocket Discussion Problem, Am. J. Phys. 40, 1170 (1972),
http://kirkmcd.princeton.edu/examples/GR/evett_ajp_40_1170_72.pdf

[19] M.H. MacGregor, Do Dewan.Beran Relativistic Stresses Actually Exist? Lett. Nuovo
Cim. 30, 417 (1981), http://kirkmcd.princeton.edu/examples/GR/macgregor_lnc_30_417_81.pdf

[20] A. Tartaglia and M.L. Ruggiero, Lorentz contraction and accelerated systems, Eur. J.
Phys. 24, 215 (2003), http://kirkmcd.princeton.edu/examples/GR/tartaglia_ejp_24_215_03.pdf

[21] T. Matsuda and A. Kinoshita, A Paradox of Two Space Ships in Special Relativity,
AAPPS Bull., 3 (Feb. 2004), http://kirkmcd.princeton.edu/examples/GR/matsuda_aappsb_feb_3_04.pdf

[22] D.T. Cornwell, Forces due to contraction on a cord spanning between two spaceships,
Eur. Phys. Lett. 71, 699 (2005),
http://kirkmcd.princeton.edu/examples/GR/cornwell_epl_71_699_05.pdf

[23] F.J. Flores, Bell’s spaceships: a useful relativistic paradox, Phys. Ed. 40, 500 (2005),
http://kirkmcd.princeton.edu/examples/GR/flores_pe_40_500_05.pdf

[24] C. Semay, Observer with a constant proper acceleration, Eur. J. Phys. 27, 1157 (2006),
http://kirkmcd.princeton.edu/examples/GR/semay_ejp_27_1157_06.pdf

[25] D.F. Styer, How do two moving clocks fall out of sync? A tale of trucks, threads, and
twins. Am. J. Phys. 75, 805 (2007),
http://kirkmcd.princeton.edu/examples/GR/styer_ajp_75_805_07.pdf
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[37] M. Pössel, Counterintuitive properties of relativistic relative motion for accelerated
observers, Am. J. Phys. 60, 957 (2024),
http://kirkmcd.princeton.edu/examples/GR/possel_ajp_60_957_24.pdf

[38] G. Cavalleri and G. Spinneli, Does a Rod, Pushed by a Force, Accelerate Less than the
Same Rod Pulled by the Same Force? Nuovo Cim. B 60, 58 (2022).
http://kirkmcd.princeton.edu/examples/GR/cavalleri_nc_66b_11_70.pdf

[39] K. Nordtvedt Jr, The equivalence princeiple and the question of weight, Am. J. Phys.
43, 256 (1975). http://kirkmcd.princeton.edu/examples/GR/nordtvedt_ajp_43_256_75.pdf

[40] N.C. McGill and D.R. Fearn, Comment on “The equivalence princeiple and the question
of weight”, Am. J. Phys. 44, 785 (1976).
http://kirkmcd.princeton.edu/examples/GR/mcgill_ajp_44_785_76.pdf

[41] Ø. Grøn, Acceleration and weight of extended bodies in the theory of relativity, Am. J.
Phys. 45, 65 (1977). http://kirkmcd.princeton.edu/examples/GR/gron_ajp_45_65_77.pdf
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