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1 Problem

Two “short” dipole antennas form a small “phased array” as shown in the figure. The second
dipole is placed a distance Δ = λ/2 away from the first along the y axis. The two dipoles
are parallel to one another and are driven 180◦ out of phase of one another.

φ

z

y

x

θ

2
Δ

Δ
2

Each antenna is a center-fed dipole radiator formed from two wires, each of length d/2 �
λ and driven by a current source as shown in the figure below. The wires are aligned parallel
to the z axis (θ = (0, π)). The current source produces a time-dependent current given by
I(t) = I0e

−iωt. You may assume that the charge that enters the wires is uniformly distributed
along their lengths.
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Calculate the time averaged angular distribution of the radiated power for this arrange-
ment in the radiation zone as a function of θ and φ, i.e., calculate 〈dP (θ, φ)/dΩ〉.

Consider also the case that the two antennas are driven 90◦ out of phase, and their
separation is only λ/4.
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2 Solution

2.1 Radiation Pattern

The amplitude A0 of the radiation from a single “short” antenna varies with angle as sin θ.
The (time-averaged) radiated power has angular distribution,

dP1(θ, φ)

dΩ
= A2

0 sin2 θ. (1)

We first discuss the angular distribution of the two-antenna system, then return to the issue
of the normalization of eq. (1).

Consider two antennas separated in space by vector distance L, and operated with phase
difference δϕ0 between them. When viewed by a distant observer along direction n̂, the path
length difference of the radiation of the two antennas to the observer is n̂ · L. The total
phase difference between the radiation from the two antennas is therefore,

δϕ = 2π
n̂ · L

λ
+ δϕ0. (2)

The total amplitude of the radiation from the two antennas is,

A = A0 sin θ(1 + eiδϕ) = 2A0e
iδϕ/2 sin θ cos

δϕ

2
. (3)

The (time-averaged) radiated power from the two antennas is then,

dP2

dΩ
=

∣∣A2
∣∣ = 4A2

0 sin2 θ cos2 δϕ

2
= 4A2

0 sin2 θ cos2

(
π
n̂ · L

λ
+

δϕ0

2

)
. (4)

In the present example, L = Δŷ = λŷ/2, δϕ0 = π, and, of course, n̂ = sin θ cosφx̂ +
sin θ sin φŷ + cos θẑ, so that,

dP2(θ, φ)

dΩ
= 4A2

0 sin2 θ cos2

(
ϕ0

2
+

πΔ

λ
sin θ sin φ

)

= 4A2
0 sin2 θ

[
cos2 δϕ0

2
cos2

(
πΔ

λ
sin θ sinφ

)
+ sin2 δϕ0

2
sin2

(
πΔ

λ
sin θ sin φ

)

−1

2
sin δϕ0 sin

(
2πΔ

λ
sin θ sinφ

)]

= 4A2
0 sin2 θ sin2

(π

2
sin θ sinφ

)
. (5)

In the horizontal plane (θ = π/2), the (time-averaged) radiation pattern is,

dP2(π/2, φ)

dΩ
= 4A2

0 sin2
(π

2
sinφ

)
. (6)

This vanishes for φ = 0◦, 180◦, and is maximal when φ = ±90◦. That is, the radiation is
preferentially emitted along the y axis, the axis of the antenna array.
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2.2 Normalization

The total, time-average radiated power from a single antenna follows from eq. (1) as,

P1 =

∫
dP1

dΩ
dΩ = A2

0

∫
sin2 θ dΩ =

8π

3
A2

0 = 8.38A2
0 ≡ P0. (7)

The total, time-average radiated power from the two antennas follows from eq. (5) as,

P2 =

∫
dP2

dΩ
dΩ = 4A2

0

∫
sin2 θ sin2

(π

2
sin θ sin φ

)
dΩ = 19.30A2

0 = 2.30P0, (8)

where the integral was evaluated using WolframAlpha.
If the total power that could be delivered to the two antennas is just 2P0, then eq. (5)

should be renormalized by the factor 2/2.30 = 0.87. The need for such a factor indicates that
the two antennas interact with one another, and the radiation of one affects the behavior of
the other. This effect is said to be due to the mutual inductance of the two antennas (which
quantity won’t be pursued further here).1

We do consider a related issue: Supposing the total drive power available is P0, what is
the improvement in the power radiated into the most favorable direction by the use of two
antennas compared to just one?

From eq. (1), the maximum radiated power occurs for θ = π/2,

dP1,max

dΩ
= A2

0. (9)

If the total drive power for both antennas is only P0, eq. (5) must be renormalized by 1/2.30
= 0.43, Then, the peak radiated power, at θ = π/2, φ = ±π/2 is,2

dP2,max

dΩ
= 1.74A2

0 = 1.74
dP1,max

dΩ
. (10)

2.3 Two Antennas with Δ = λ/4, ϕ0 = π/2

If L = λ ŷ/4 and ϕ0 = π/2, the time-average radiation pattern of the two antennas follows
from eq. (5) as,

dP2(θ, φ)

dΩ
= = 2A2

0 sin2 θ
[
1 − sin

(π

2
sin θ sinφ

)]
. (11)

The total, time-average radiated power from the two antennas follows from eq. (11) as,

P2 =

∫
dP2

dΩ
dΩ =

16π

3
A2

0 = 2P0. (12)

1In case the sources are excited atoms or other unstable particles, if they are sufficiently close to one
another the effect of their mutual interaction is to reduce the particles’ lifetimes. See R.H. Dicke, Coherence
in Spontaneous Radiation Processes, Phys. Rev. 93, 99 (1954),
http://kirkmcd.princeton.edu/examples/QED/dicke_pr_93_99_54.pdf

2Similarly, if the total drive power is 2P0, the renormalization factor is 2 / 2.30 = 0.87, and dP2,max/dΩ =
3.48 dP1,max/dΩ.
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In this case, there is no mutual interaction between the antennas, such that the power
radiated by the coherent superposition of the two antennas equals the sum of their individual
powers, which result also applies to incoherent superposition. As such, this famous case
may lead to the incorrect impression that coherent superpostion can be applied without a
renormalization factor, such that in general the power radiated by the pair of antennas is
greater than their total drive power.

If the total available drive power is only P0, then eq. (11) is renormalized by a factor of
1/2, and the peak radiated power occurs for θ = π/2, φ = −π/2, with,

dP2,max

dΩ
= 2A2

0 = 2
dP1,max

dΩ
. (13)

Appendix: Radiated Power vs. Terminal Current I0

For completeness, we relate A2
0 to the current I0 at the antenna terminals by considerations

of a single antenna. The total radiated power is given by an appropriate version of Larmor’s
formula (in Gaussian units),

P =
2p̈2

3c3
=

2ω4p2

3c3
, (14)

where p is the dipole moment and ω is the frequency. The time-averaged power is then,

〈P 〉 =
ω4p2

0

3c3
, (15)

The angular distribution varies as sin2 θ, and so must be,

〈
dP

dΩ

〉
=

ω4p2
0 sin2 θ

8πc3
. (16)

The hint is that the charge distribution ρ(z, t) = ρ0(z)e−iωt is actually uniform in each
wire of the antenna: ρ0(0 < z < d/2) = ρ0 = constant. Of course, ρ0(−z) = −ρ0(z). The
dipole moment is,

p0 =

∫ d/2

−d/2

ρzdz =
ρ0d

2

4
. (17)

To get ρ0, we must relate the charge to the current, which is usefully done via the continuity
equation, ∇ · j = −ρ̇. For our one-dimensional problem, this can be re-expressed as,

∂I

∂z
= −ρ̇ = iωρ0e

−iωt (0 < z < d/2), (18)

which integrates to,

I(z, t) = C(t) + iρ0ωze−iωt (0 < z < d/2). (19)

Now, I(d/2) = 0, so C(t) = −iρ0ω(d/2)e−iωt, and,

I(z, t) = − iρ0ωd

2

(
1 − 2z

d

)
e−iωt (0 < z < d/2). (20)
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That is,

I0 = − iρ0ωd

2
, and ρ0 =

2I0

ωd
. (21)

The full expression for the current distribution is,

I(z, t) = I0

(
1 − 2 |z|

d

)
e−iωt (−d/2 < z < d/2). (22)

Combining eqs. (1), (16), (17), and (21), and noting that ω/c = k = 2π/λ, we have,

〈
dP

dΩ

〉
=

ω2d2I2
0 sin2 θ

32πc3
=

πI2
0 sin2 θ

8c

(
d

λ

)2

≡ A2
0 sin2 θ. (23)

Hence,

A2
0 =

πI2
0

8c

(
d

λ

)2

. (24)

Inserting this in eq. (5), the time-averaged power radiated by the two antennas is,

〈
dP (θ, φ)

dΩ

〉
=

πI2
0

2c

(
d

λ

)2

sin2 θ sin2
(π

2
sin θ sin φ

)
. (25)
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