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1 Problem

This problem is adapted from Prob. A.2 of the Princeton Graduate Preliminary Examination
of Jan. 2020 [1]. Possibly it was based on Prob. 9.51 of [2].

A thin, uniform disk of mass m and radius a rolls (without slipping?) in a horizontal
circle of radius b. The (massless) axle of the disk is connected to a fixed pivot point at height
a above the ground at the center of the circle. The pivot cannot exert a tension along the
axle, as indicated by the loop in the pivot as sketched below.

The motion is steady, with constant angular velocity Ω about the vertical, assuming no
dynamic friction due to air resistance or rolling friction at the ground or at the bearings on
the axle.

What are the scalar components of the static-friction force FS of the ground on the disk
and of the force FP of the pivot on the axle?

What can be said if rolling friction FR at the point of contact of the disk with the ground
is modeled as a force of magnitude FR = μN , opposing the direction of motion, where N
is the normal force of the ground on the disk (the vertical component of FS), and μ is a
constant?

2 Solution

2.1 Equations of Motion

In addition to the vertical z-axis, we consider a set of principle axes, (1̂, 2̂, 3̂) of the disk,
with horizontal axis 1̂ pointing from the center of the disk to the pivot point along the axle
of the disk, horizontal axis 2̂ in the vertical plane of the disk, and vertical axis 3̂ = ẑ also in
the plane of the disk, as sketched below.
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Rolling friction FR has only a 2-component, while static (or sliding) friction FS and the
pivot force FP can point in any direction. For now, we suppose that FP1 could be nonzero.

The equation of motion of the center of mass of the disk, which is at the center of the
disk in the approximation of a massless axle, is simply,

m
dvcm

dt
= FP + FR + FS −mg ẑ, (1)

if we ignore the air resistance and rolling friction at the bearing of the disk.
Since the center of a disk moves in a horizontal circle of radius b with angular velocity

Ω and center of mass velocity vcm = −Ωb 2̂. The acceleration dvcm/d/t of the c.m. has 1̂-
component = mΩ2b = centripetal acceleration, 2̂-component = −Ω̇b, while the 3̂-component
is zero.

The disk has angular velocity ω about 1̂, the axle of the system. If we suppose the disk
roll without slipping, this would imply that ω > 0 and,

vcm = ωa, vcm = −ωa 2̂, (2)

and hence,

ω =
b

a
Ω. (3)

However, we defer use of relation (3) so that the system could be considered a spinning
top/gyroscopic with one point fixed if FR and FS were zero.

The scalar components of eq. (1) can now be written as,

mΩ2b = FP1 + FS1, −mΩ̇b = FP2 + FR + FS2, 0 = FP3 + FS3 − mg. (4)

The center of the disk has angular velocity Ω about the pivot point, so the total angular
velocity is,

ωtot = ω 1̂ + Ω 3̂. (5)

The principal axes have angular velocity Ω 3̂, such that d̂i/dt = Ω 3̂ × î,

d1̂

dt
= Ω 2̂,

d2̂

dt
= −Ω 1̂,

d3̂

dt
= 0. (6)
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The disk has moments of inertia, with respect to its center of mass I1 = kma2 = 2I2 = 2I3

due to the axial symmetry of the disk (with k = 1/2 for a uniform disk). The angular
momentum of the disk with respect to its center of mass is,

Lcm = I1 ω 1̂ + I2 Ω 3̂ = I1 ω 1̂ +
I1 Ω

2
3̂. (7)

Then, the angular equation of motion with respect to the c.m. of the disk is,1

dLcm

dt
= I1 ω̇ 1̂ + I1 ω Ω 2̂ +

I1 Ω̇

2
3̂ = τ cm

= b 1̂ × FP − a 3̂ × FR − a 3̂ × FS

= bFP2 3̂ − bFP3 2̂ + aFR 1̂ − aFS1 2̂ + aFS2 1̂. (8)

The three scalar components of this equation of motion are,

I1 ω̇ = aFR + aFS2, I1 ω Ω = −aFS1 − bFP3, I1 Ω̇ = 2bFP2. (9)

2.2 Steady Motion with No Rolling Friction

For steady motion, ω̇ = − = Ω̇, and there can be no rolling friction (which dissipates energy).
Then, eqs. (4) and (9) become,

mΩ2b = FP1 + FS1, 0 = FP2 + FS2, FP3 + FS3 = mg, (10)

0 = FS2, I1 ω Ω = −aFS1 − bFP3, 0 = FP2. (11)

2.2.1 Gyroscopic Motion

One possibility is that there is that FR = 0 = FS, and the motion is gyroscopic precession,

FP1 = mΩ2b, FP2 = 0, FP3 = mg, Ω = −mgb

I1ω
. (12)

For gyroscopic motion with ω > 0, Ω is negative, and opposite to that shown in the figure
on p. 1.

2.2.2 Rolling without Slipping

If we now suppose that FP1 = 0, i.e., the pivot exerts no force along the axle, the first of
eq. (10) tells us that,

FS1 = mΩ2b, (13)

1The claim in the statement of this problem in [1] that the pivot/“joint can apply forces but no torques”
is misleading. Probably it was meant that the “joint” applies no axial torque on the axle (which would
change the angular velocity ω of the disk). The force FP at the pivot/joint does apply nonzero torque about
the c.m.
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and the second of eq. (11), together with the rolling constraint (3), implies,

FP3 = −mΩ2a − I1ωΩ

b
= −mΩ2a − I1Ω

2

a
= −I1 + ma2

a
Ω2, (14)

using the rolling constraint (3) that ω = bΩ/a. Then, the third of eq. (10) indicates that the
(upward) normal force N = FS3 on the disk is,

N = FS3 = mg − FP3 = mg +
I1 + ma2

a
Ω2. (15)

2.3 Effect of Rolling Friction

If we again suppose that FP1 = 0, eqs. (4) and (9) including rolling friction FR become,

mΩ2b = FS1, −mΩ̇b = FP2 + FR, FP3 + FS3 = mg, (16)

I1ω̇ =
I1b Ω̇

a
= aFR + aFS2, I1 ω Ω =

I1b Ω2

a
= −aFS1 − bFP3, I1Ω̇ = 2bFP2, (17)

assuming also that the rolling contraint (3) holds.
The presence of rolling friction does not affect the argument in sec. 2.2.2 that led to

eq. (15), so the normal force on the disk is again given by that equation. Then, in the model
that FR = μN 2̂, the second of eq. (16) and the third of eq. (17) tell us that

− mΩ̇b =
I1Ω̇

2b
+ FR, Ω̇ = − 2b

I2 + 2mb2
μN = − 2μb

I2 + 2mb2

(
mg +

I1 + ma2

a
Ω2

)
, (18)

which can be integrated numerically to find Ω(t).
Then, FR(t) = μN(t) can be obtained from eq. (15), FS1(t) can be obtained from the

first of eq. (16), FS2(t) can be obtained from the first of eq. (17), FP2(t) can be obtained
from the third of eq. (17), FP3(t) can be obtained from the second of eq. (17), and finally
FS3(t) can be obtained from the third of eq. (16).
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