The Fields in a Box with Resistive Walls

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(April 16, 1998)

1 Problem

A uniform electric field is desired throughout a cube of edge $a$. This can be arranged by constructing a cubical box in which the face at $z = 0$ is a (perfect) conductor at potential 0, the face at $z = a$ is a conductor at potential $V_0$, and the four remaining faces are made of a poor conductor, say of resistivity $\rho_0$ Ohms/square.

Suppose, however, the material of the faces between $z = 0$ and $a$ has a nonuniform resistivity which varies as,

$$\rho(z) = \rho_0 \left(1 + \epsilon \sin \frac{2\pi z}{a}\right),$$

where $\epsilon \ll 1$.

An exact solution for the potential inside the box can be given, but is very cumbersome. Calculate the potential $V(z)$ on the resistive walls, and estimate the potential at the center of the cube.

Estimate the maximum ratio of the transverse electric field to the longitudinal field ($E_z$). Where does this maximum occur?

You may assume the current in the resistive faces flows parallel to the $z$ axis.

2 Solution

We first find the current in the resistive walls, and then calculate the potential as a function of $z$ on the walls. To estimate the potential $\phi$ as the center of the cube, we use the fact that $\nabla^2 \phi = 0$ implies that the potential in the center of a small volume element is the average of the potential over the surrounding surface.

First, the wall current $I = V_0/R$.

The total resistance $R = \int_0^a R(z)dz$, where $R(z) = \rho(z)dz/4a$, since the perimeter of the wall is $4a$. Hence,

$$R = \frac{\rho_0}{4a} \int_0^a \left(1 + \epsilon \sin \frac{2\pi z}{a}\right) dz = \frac{\rho_0}{4a} \left[z - \frac{\epsilon a}{2\pi} \cos \frac{2\pi z}{a}\right]_0^a = \frac{\rho_0}{4}.$$

Then on the wall,

$$V(z) = \int_0^z IdR = \frac{V_0 \rho_0}{R} \frac{\rho_0}{4a} \int_0^z \left(1 + \epsilon \sin \frac{2\pi z}{a}\right) dz = V_0 \left[\frac{z}{a} + \frac{\epsilon}{2\pi} \left(1 - \cos \frac{2\pi z}{a}\right)\right].$$

The average potential on the wall is,

$$\langle \phi \rangle_{\text{wall}} = \frac{V_0}{2} \left(1 + \frac{\epsilon}{\pi}\right).$$
The average potential over the entire surface of the cube is,

\[
\langle \phi \rangle = \frac{1}{6} \left[ 0 + V_0 + 4 \frac{V_0}{2} \left( 1 + \frac{\epsilon}{\pi} \right) \right] = \frac{V_0}{2} \left( 1 + \frac{2\epsilon}{3\pi} \right) \approx \phi_{\text{center}}.
\]

The electric field in the \( z \) direction is \( E_z \approx V_0/a \).

The transverse electric field is greatest in the midplane, \( z = a/2 \), where the wall potential is,

\[
\phi_{\text{wall}} = \frac{V_0}{2} \left( 1 + \frac{2\epsilon}{\pi} \right).
\]

The electric field in the \( x \) direction is roughly,

\[
E_x \approx \frac{\phi_{\text{wall}} - \phi_{\text{center}}}{a/2} = \frac{4\epsilon V_0}{3\pi a} \approx \frac{4\epsilon}{3\pi} E_z.
\]

One might argue that the variation of the potential with \( x \) is sine-like, and so the maximum slope is \( \pi/2 \) times the simplified estimate. Then,

\[
E_{x,\text{max}} \approx \frac{2\epsilon}{3} E_z.
\]

Similarly for \( E_y \).

The transverse field is therefore greatest in the corners of the wall, at the midplane in \( z \), and,

\[
\frac{E_{\perp,\text{max}}}{E_z} \approx \frac{2\sqrt{2}}{3} \epsilon \approx \epsilon.
\]

No doubt, \( E_{\perp}/E_z \approx \epsilon \) could have been guessed at once.