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1 Problem

A space station is in a circular orbit of radius rs about the Earth. An astronaut is on a
spacewalk at distance rs + ε, with ε � rs, from the center of the Earth along the radius
through the space station. With practice, the astronaut can throw a “beer can” so that it
moves in the plane of the orbit of the space station, and appears to orbit the space station.

In what direction, and with what speed should the astronaut throw the beer can? What
is the shape, size and period of the orbit of the beer can?
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2 Solution

2.1 Analysis in the Rest Frame of the Earth

We neglect the effect of gravity between the space station and beer can (and also that of the
Sun and the various other objects in the Solar system).

Then, the orbit of the beer can is an ellipse of eccentricity εc = ε/rs about the Earth,
which orbit is very close to the orbit of the space station. For small ε the orbit of the beer
can is essentially a circle of radius rs, i.e., an orbit with semimajor axis a ≈ rs, and period
Ts = 2π/ωs = 2π

√
r3
s/GmE of the space station,1

1

rc
=

1 − εc cos θc

a(1 − ε2
c)

, rc ≈ rs(1 + εc cos θc) = rs + ε cos ωst, (1)

where to a first approximation, θc = ωst.

When the space station has advanced by 90◦ in its orbit about the Earth, with respect
to the configuration in the first figure on p. 1, we see that the beer can is behind the space
station by distance δ. This implies that relative to the space station, the motion of the beer
can is retrograde compared to the motion of the space station about the Earth.

While θc ≈ ωst, which is a sufficient approximation for eq. (1), to determine δ and the
shape of the orbit of the beer can relative to the space station, we need a better approxima-
tion. For this, we note that the angular momentum Lc of the beer can about the Earth is
constant (ignoring gravitational effects of the Sun, Moon, space station, etc.),

θ̇c =
Lc

mcr2
c

≈ Lc

mcr2
s(1 + ε

rsωs
sinωst)2

≈ Lc

mcr2
s

(
1 − 2

ε

rs
cos ωst

)
. (2)

1This approximation is reviewed on p. 98 of Ph205 Lecture 9,
http://kirkmcd.princeton.edu/examples/Ph205/ph205l9.pdf
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We can integrate eq. (2),

θc ≈ Lc

mcr2
s

(
t − 2

ε

rsωs
sinωst

)
= ωst − 2

ε

rs
sinωst, (3)

noting that when θc = 90◦, rc ≈ rs and θ̇c ≈ ωs, so Lc = mcr
2
c θ̇c ≈ mcr

2
sωs.

At time t = 0, θ̇c(0) ≈ ωs − 2εωs/rs, and the velocity of the beer can is parallel to that
of the space station, with,

vc(0) = (rs + ε)θ̇c(0) ≈ rsωs − εsωs. (4)

The initial velocity of the beer can relative to that of the space station (vs = rsωs) is,

Δvc(0) = vc(0) − vs ≈ −εsωs = −εvs

rs
(relative to space station). (5)

If we suppose that the astronaut moves so as to stay at distance ε from the space station
along the radius through the center of the space station, then va = (rs + ε)ωs, parallel to the
orbit of the space station, and the initial velocity of the beer can relative to the astronaut
is,

Δvc(0) = vc(0) − va ≈ −2εsωs = −2
εvs

rs
(relative to astronaut). (6)

For example, with ε = 10 m and a space station with period of 2 hours, ωs = 2π/7200 ≈
1/600 rad/s, and εωs ≈ 1/60 m/s ≈ 1.5 cm/s.

Finally, to determine δ, we note that in eq. (3), when θs = ωst = 90◦, θc ≈ θs − 2ε/rs,
and,

δ = rs[θs(90
◦) − θc(90

◦)] = 2ε. (7)

The orbit of the beer can relative to the space station is an ellipse with semimajor axis δ
twice its semiminor axis ε.

2.2 Analysis in the Rotating Frame of the Space Station

We now consider a rotating frame, centered on the Earth, with angular velocity ωs = ωs ẑ
with respect to the nonrotating frame. The space station is at rs = (x, y, z) = (0, rs, 0) in the
rotating frame, and the can moves in the x-y plane at position rc = rs ŷ+r with r ≡ (x, y, 0)
in the x-y plane.2 Then, F = ma for the can in the rotating frame includes the centrifugal
and Coriolis forces,

mac = F− mωs × (ωs × rc) − 2mωs × v = F + mω2
src − 2mωs ẑ × (ẋ x̂ + ẏ ŷ), (8)

where v = (ẋ, ẏ, 0) is the velocity of the can in the rotating frame, the force of gravity from
the Earth on the can is,

F = −GmEm r̂c

r2
c

≈ −GmEm ŷ

(rs + y)2
≈ −GmEm ŷ

r2
s

(
1 − 2y

rs

)
, (9)

2There is some possibility of confusion here, since y is not the y-coordinate of the can relative to the
Earth, but relative to the space station.
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and GmEm/r2
s = mω2

srs according to Kepler’s third law. Then, eq. (8) can be written as,

mac = m(ẍ x̂ + ÿ ŷ) ≈ −mω2
srs

(
1 − 2y

rs

)
ŷ + mω2

s(rs + y) ŷ + 2mωs(ẏ x̂ − ẋ ŷ)

= 3mω2
sy ŷ + 2mωs(ẏ x̂ − ẋ ŷ). (10)

We try an ellipse-like solution for the initial conditions x(0) = 0, y(0) = ε,

x = δ sinωt, y = ε cosωt. (11)

From eq. (10) we have,

ẍ = 2ωsẏ, ⇒ −δω2 = −2ωsεω ⇒ δ =
2ωsε

ω
, (12)

ÿ = 3ω2
sy + 2ωsẋ ⇒ −εω2 = 3ωsε − 2ωsωδ = 3ωsε − 4ωsε = −ωsε (13)

Hence,

ω = ωs, and δ = 2ε. (14)

Thus, we have found the orbit of the can relative to the space station to be the same as that
found in sec. 2.1 above. As before,

ẋ(0) = 2εωs = 2ε

√
GmE

r2
s

, ẏ(0) = 0, (15)

so the initial motion of the can relative to the space station is with velocity antiparallel to
the velocity of the space station relative to the Earth.
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