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1 Problem

Discuss the motion of a half-full (or half-empty) beer can as it rolls down an incline of angle
α to the horizontal.

You may simplify your discussion by supposing that the can itself is a massless, thin
cylindrical shell that rolls without slipping, while the “beer” is a solid half cylinder that slides
without friction inside the can, with the axis of the can always horizontal (and perpendicular
to the gradient of the incline). In effect, the half cylinder slides without friction down the
incline.

2 Solution

Consider the line through the center of mass of the half cylinder that is parallel to the axis
of the can. This line is also horizontal, and perpendicular to the gradient of the incline.

The general motion of the half cylinder can be described as a translation of this line, plus
a rotation of the half cylinder about it, such that the half cylinder always maintains contact
with the incline.1

The forces on the half cylinder are gravity and the normal force of the incline. The force
parallel to the incline is just mg sinα, where g is the acceleration due to gravity, and hence
the component parallel to the incline of the acceleration of the center of mass is g sinα.
Defining s to be the distance the center of mass of the half cylinder has moved down the
incline, we have that,

s =
1

2
g sinαt2, (1)

for motion that starts from rest at time t = 0.2

In general, the half cylinder rotates as its center of mass obeys eq. (1). We consider that
case of no oscillations, of small oscillations, and finally motion in which the half cylinder
“loops the loop” as the can rolls down the incline.

1Strictly, the half cylinder remains in contact with the can, which latter remains in contact with the
incline. To keep the can rotating without slipping with respect to the incline, there must a friction between
the can and the incline. However, in the limit of a massless can, the force of friction is zero, so we neglect
friction in our analysis.

2In the case of no friction between the half cylinder and the can, the motion of the center of mass is
the same as for a mass that slides down the incline with no friction. In contrast, it is well known that, for
rolling without slipping, a uniform cylinder with moment of inertia I = kma2 about its axis has acceleration
g sin α/(1 + k) down an incline. For a cylindrical shell, k = 1, while for a solid cylinder, k = 1/2.

Experiments reported in [1] for a can partially filled with water indicated that the acceleration is ≈ g sin α
for a nearly full can, while less than (g/2) sin α for a nearly empty can. The latter result suggests that if
the water “sloshes” around inside the can, substantial energy is thereby dissipated, resulting in considerably
reduced kinetic energy of rolling. Related studies include [2]-[5].
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2.1 The “Trivial” Solution

The “trivial” solution is the case of no rotation (while the half cylinder slides down the
incline with acceleration g sinα).

The (flat) surface of the half cylinder is not, however, horizontal but is tilted at some
angle. To deduce this quickly, consider the frame that moves parallel to the incline with
acceleration g sinα. In this accelerated frame there is an additional, apparent “gravitational”
force mg sin α on any mass m, which force points up the incline at angle α. With the aid of
Fig. 1, we infer that geff = g cosα, and this makes angle α to the vertical. That is, geff is
perpendicular to the incline.
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Figure 1: A half cylinder will slide down a frictionless incline of angle α
without oscillation if its flat side is parallel to the incline. In the accelerated
frame, the effective gravity vector, geff is perpendicular to the incline.

The equilibrium surface of the half cylinder is perpendicular to geff , and hence parallel
to the incline.

2.2 Small Oscillations in the Accelerated Frame

If the half cylinder oscillates about equilibrium, there is both rotation of the half cylinder
and motion of the c.m. perpendicular to the incline, as viewed in the accelerated frame.

The solution to the present problem can be found using a little-known trick described by
Tiersten [6]. If a rigid body has an instantaneous center of motion, then its instantaneous
kinetic energy can be written as IC ω2/2 where IC is the moment of inertia about the in-
stantaneous center. The rate of change of energy is τC ω where τC is the torque about the
instantaneous center. (If it’s not obvious, this follows from F · v = F · ω × r = r × F · ω
where r runs from the instantaneous center to the point of application of force F.) Taking
the time derivative of the instantaneous kinetic energy, we have,

τC =
1

ω

d(IC ω2/2

dt
= IC ω̇ +

İC ω

2
. (2)

as the equation of motion.
In the accelerated frame, the half cylinder has an instantaneous center of motion. It can

be located by noting that the velocity of a point is at right angles to the line joining it to the
center of motion. In particular, the center of mass moves only perpendicular to the incline.
Hence, the instantaneous center is on a line parallel to the incline through the center of mass.
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Also, the points on the half cylinder that are instantaneously in contact with the incline have
instantaneous velocity parallel to the incline. Hence, the instantaneous center of rotation
is on the line perpendicular to the incline through the point of contact. The instantaneous
center of rotation is at the intersection of these two lines, shown as point C in Fig. 2.
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Figure 2: The center of mass of the half cylinder is distance b from the flat
surface. When the half cylinder has tilted by angle φ from equilibrium in the
accelerated frame, the center of rotation C is at the intersection of the normal
to the incline through the point of contact with the line parallel to the flat
surface that passes through the center of mass.

We define φ as the angle between the flat surface of the cylinder and the incline, which
is also the angle between the perpendicular to the incline through the point of contact and
the line joining the center of the cylinder to the c.m. Then, by the parallel axis theorem,

IC = Icm + mb2 sin2 φ ≈ Icm (3)

for small φ. In the same approximation, İC = 0. The torque about the instantaneous center
(calculated in the accelerated frame) is,

τC = −mgeffb sinφ ≈ mbg cosα φ. (4)

Since φ̇ = ω, the equation of motion becomes,

Icmφ̈ ≈ −mbg cosα φ, (5)

so the frequency of small oscillations is related by,

ω2 =
mbg cosα

Icm
. (6)

To calculate b and Icm, we use polar coordinates in which the half cylinder occupies the
region r < a and −π/2 < θ < π/2. The cross-sectional area of the half cylinder is, of course,
πa2/2. Then,

b · Area =

∫
x · dArea =

∫ a

0

dr

∫ π/2

−π/2

rdθ r cos θ =
2a3

3
, so b =

4a

3π
. (7)
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Similarly,

Iaxis =
m

Area

∫ a

0

dr

∫ π/2

−π/2

rdθ r2 =
ma2

2
, (8)

as might have been “guessed”. The moment of inertia Icm of the half cylinder about its
center of mass is then (by the parallel-axis theorem),

Icm = Iaxis −mb2 = m(a2/2 − b2) ≈ 0.32ma2. (9)

Returning to the oscillations of the half cylinder, the frequency is now expected to obey,

ω2 =
2bg cosα

a2 − 2b2
=

24πg cosα

9π2 − 32
≈ 1.33g cos α

a
. (10)

Since the trick using the instantaneous center of motion is obscure, we Lagrange’s method.

2.3 Solution via Lagrange’s Method in the Lab Frame

We use Lagrange’s method with generalized coordinates s and φ in the lab frame, where s
is the distance parallel to the incline that the c.m. has moved, and φ is the angle between
the flat surface of the half cylinder and the incline.

The perpendicular distance between the incline and the c.m. is then h = a− b cosφ. The
kinetic energy is the sum of the kinetic energy of the motion of the c.m. plus the energy of
rotation about the c.m.,

T =
m

2
(ṡ2 + ḣ2) +

Icm

2
φ̇

2
=

m

2
(ṡ2 + b2 sin2 φ φ̇

2
) +

Icm

2
φ̇

2
. (11)

The potential is just V = mgz where z is the vertical coordinate of the c.m. Some care
is required to relate z to s and φ. I found it useful to introduce another set of coordinates
for this: u = distance that the axis of the cylinder has moved parallel to the incline, and θ
= angle between the vertical and the line joining the axis of the half cylinder to its c.m.3

α
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�

Figure 3: Illustrating the coordinates s, u, φ and θ.

We see from Fig. 3 that,

u = s + b sinφ, and θ = α + φ. (12)

3These coordinate were used in [1], where u was called x.
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Then,

z = −u sinα− b cos θ = −s sin α− b sin α sin φ− b cos(α+φ) = −s sinα− b cos α cos φ. (13)

Finally, the potential energy is,

V = −mgz = −mg(s sinα + b cos α cosφ). (14)

The Lagrange equation of motion deduced from coordinate s is,

s̈ = g sin α, (15)

as was expected. The equation from coordinate φ is,

(mb2 sin2 φ + Icm) φ̈ + mb2 sinφ cos φ φ̇
2

= −mbg cosα sinφ. (16)

For completeness, we note that in terms of coordinates u = s + b sin φ and θ = α + φ, for
which φ = θ−α and s = u−b sin(θ−α), the Lagrangian is, recalling that mb2+Icm = ma2/2,

L(u, φ) =
m

2

[
u̇2 − 2b cos φ u̇ φ̇ +

a2

2
φ̇

2
]

+ mg[u sinα + b cos(α + φ)], (17)

for which the equations of motion are,

ü− b cos φ φ̈ + b sinφ φ̇
2

= g sinα, (18)

a2

2
φ̈− b cos φ ü = −b sin(α + φ). (19)

And, in terms of coordinates u and θ = α + φ, the Lagrangian is,

L(u, θ) =
m

2

[
u̇2 − 2b cos(θ − α)u̇ θ̇ +

a2

2
θ̇

2
]

+ mg(u sinα + b cos θ), (20)

for which the equations of motion are,

ü − b cos(θ − α) θ̈ + b sin(θ − α) θ̇
2

= g sin α, (21)

a2

2
θ̈ − b cos(θ − α) ü = −b sin θ. (22)

2.3.1 Small Oscillations

For small oscillations about the equilibrium φ = 0, say of the form φ = φ0 sin ωt, eq. (16)
simplifies to,

Icmφ̈ = −mbg cos α φ, (23)

as found previously in eq. (5), sec. 2.2. Again, the frequency ω of small oscillations is related
by,

ω2 =
mbg cos α

Icm
=

2bg cos α

a2 − 2b2
, (24)
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where b = 4a/3π.
The center of the can is at,

u = s + b cos φ =
g sin αt2

2
+ b cos(φ0 sinωt) ≈ g sinαt2

2
+ b

(
1 − φ2

0 sin2 ωt

2

)

=
g sinαt2

2
+ b

(
1 − φ2

0

4
+

φ2
0 cos 2ωt

2

)
. (25)

This is like the case of sliding without friction down the incline, but with a small modulation
at angular frequency 2ω, which would appear as a small, periodic “hesitation” in the position
u.

If the half cylinder started from rest with its surface horizontal, then φ0 = α and the
oscillations would not be small unless α were small.

2.3.2 Motion Where φ Becomes Large

Another type of possible motion is that where the half cylinder “loops the loop,” and rolls
down the incline essentially as a rigid body (inside the outer can). This motion is not possible
starting from rest, but could occur if the half cylinder somehow had a large initial angular
velocity φ̇(t = 0) = Ω.

Here, we consider that case that angle φ varies with time as,

φ = Ωt + ε sin ωt. (26)

That is, the half cylinder does not quite rotate uniformly (at angular velocity Ω, but under-
goes small oscillations about this.

Then, the equation of motion (16) averages to the form,

− εω2(mb2/2 + Icm) sinω′t ≈ −mbg cos α sinΩt, (27)

which implies that,

ω = Ω, and ε =
mbg cosα

Ω2(mb2/2 + Icm)
. (28)

The angular velocity Ω is arbitrary, but must be large enough that ε is small for eq. (26) to
hold.

The position u of the center of the can along the incline is,

u = s + b sinφ ≈ g sinα
t2

2
+ b sin(Ωt + ε sinΩt) ≈ g sinα

t2

2
+ b sinΩt. (29)

This motion would appear “hesitant” to the eye, but not “chaotic”.

For cases in between the limits of small oscillation and the motion of eq. (26), the motion
is complex, and the approximation of the half cylinder of beer as a rigid body would fail,
resulting in “sloshing” of the beer that would have to be described by the (nonlinear) Navier-
Stokes equation. Other aspects of a rolling can of liquid have been discussed in [1, 7].
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3 Massive Can with Partial Filling

In this section we extend the analysis to include the case of a can of length l and radius
a made from sheet metal of mass density ρcan, that is filled with “beer” of density ρbeer to
height h < 2a. We again suppose that the “beer” slides without friction inside the can while
keeping the same shape as when the can is at rest.

The cylindrical wall of the can has mass m1 = 2πaltρcan, where t � a is the thickness of
the sheet metal, and moment of inertia I1 = m1a

2 about its axis. Each end of the can has
mass m2 = πa2tρcan and moment of inertial I2 = m2a

2/2. The total mass of the can is,

mcan = m1 + 2m2 = 2πat(l + a)ρcan, (30)

and its total moment of inertia (about its axis) is,

Ican = I1 + 2I2 = (m1 + m2)a
2 = πa3t(2l + a)ρcan =

2l + a

2(l + a)
mcana

2 ≈ 0.89mcana
2, (31)

for typical 12-oz. cans of radius a ≈ 3.3 cm and length l ≈ 12 cm.
The cross section of the “beer” is a circular segment that subtends angle 2β with respect

to the axis of the can, as illustrated below.

The height h of the filling of the can is, in terms of angle β (0 ≤ β ≤ π),

h = a(1 − cos β). (32)

A lamina at coordinate y has area dA = 2
√

a2 − y2 dy, so the area of the cross section, and
the mass of the “beer”, are, using Dwight 350.01,

A = 2

∫ a

a cosβ

dy
√

a2 − y2 = a2
(π

2
− cos β sinβ − sin−1 cos β

)
=

a2

2
(2β − sin 2β) ,(33)

m = Alρbeer =
a2lρbeer

2
(2β − sin 2β) . (34)

The center of mass of the beer is located at distance b from the axis related by,

b =
1

A

∫ a

a cos β

dy 2y
√

a2 − y2 =
2a3 sin3 β

3A
=

4a sin3 β

3(2β − sin 2β)
. (35)

The moment of inertia of a lamina at coordinate y is ρbeerl(2
√

a2 − y2)3 dy/12 about its
symmetry axis, and so the moment about the axis of the can is, according to the parallel-
axis theorem, 2ρbeerl

√
a2 − y2) dy[y2 +(a2−y2)/3]. Hence, the moment of inertia of the beer
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about the axis of the can is, using Dwight 352.01,

Iaxis =

∫ a

a cosβ

dy
2ρbeerl

√
a2 − y2

3
(a2 + 2y2)

=
2ρbeera

4l

3

(
π

4
− cos β sinβ

2
− sin−1 cosβ

2
+

π

8
+

cos β sin3 β

2
− cos β sinβ

4
− sin−1 cos β

4

)

=
2ρbeera

4l

3

(
3β

4
− 3 sin 2β

8
+

sin 2β sin2 β

8

)
=

ρbeera
4l

4

(
2β − sin 2β +

2 sin 2β sin2 β

3

)

=
ma2

2

(
1 +

2 sin 2β sin2 β

3(2β − sin 2β)

)
. (36)

Writing Iaxis as kma2, as angle β increases from 0 to π, k decreases from 1 (for a point mass
at distance a from the axis) to 1/2 at β = π/2 (as in eq. (8), then dips slightly and returns
to k = 1/2 at β = π (as for a solid cylinder), as shown in the figure below.

As in eq. (9), the moment of inertia of the beer about its own center of mass is given by,

Icm = Iaxis − mb2 =
ma2

2

(
1 +

2 sin 2β sin2 β

3(2β − sin 2β)
− 32 sin6 β

9(2β − sin 2β)2

)
, (37)

using eq. (35). Writing Icm as kma2, as angle β increases from 0 to π, k increases from 0 (as
for a point mass) to 0.32 at β = π/2 (as in eq. (9)), and then continues to increase to 0.5 at
β = π (as expected for a solid cylinder).
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The center of mass of the entire system is at distance,

d =
m

m + mcan
b (38)

from the axis of the can, on the radius from the axis of the can to the center of mass of the
“beer”.

3.1 Equations of Motion

The system has two degrees of freedom, and as before, we can use either s or u = s+ b sinφ,
and θ or φ = θ + α as the independent coordinates.

The condition for rolling without slipping of the can is that its angular velocity is u̇/a.
The kinetic energy of the can is,

Tcan =
1

2

(
mcan +

Ican

a2

)
u̇2 =

1

2

(
mcan +

Ican

a2

) (
ṡ2 + 2b cos φ ṡ φ̇ + b2 sin2 φ φ̇

2
)

, (39)

and its potential energy is,

Vcan = −mcangu sinα = −mcang(s + b sinφ) sinα. (40)

The coordinates and velocities parallel and perpendicular to the incline of the center of mass
of the “beer” (labeled by m in the figure above) are,

x = s = u − b sinφ = u − b sin(θ − α), y = −b cos φ = −b cos(θ − α), (41)

ẋ = ṡ2 = u̇ − b cos(θ − α) θ̇, ẏ = b sin φ φ̇ = b sin(θ − α) θ̇. (42)

v2
beer = ẋ2 + ẏ2 = u̇2 − 2b cos(θ − α) u̇ θ̇ + b2 θ̇

2
= ṡ2 + b2 sin2 φ φ̇

2
. (43)

The kinetic energy of the “beer” (with angular velocity ωbeer = φ̇ = θ̇) is,

Tbeer =
1

2
mv2

beer +
1

2
Icmω2

beer =
1

2
m

(
u̇2 − 2b cos(θ − α) u̇ θ̇ + b2 θ̇

2
)

+
1

2
Icm θ̇

2

=
1

2
m(ṡ2 + b2 sin2 φ φ̇

2
) +

1

2
Icm φ̇

2
, (44)

and its potential energy is (recalling eq. (13),

Vbeer = −mg(u sinα + b cos θ) = −mg(s sinα + b cos α cos φ). (45)

9



The equations of motion for coordinates u and θ are therefore,(
m + mcan +

Ican

a2

)
ü − mb[cos(θ − α) θ̈ − sin(θ − α) θ̇

2
] = (m + mcan)g sinα, (46)

ma2 θ̈ − mb cos(θ − α) ü = −mgb sin θ, (47)

recalling that mb2 + Icm = ma2, and the equations of motion for coordinates s and φ are,(
m + mcan +

Ican

a2

)
s̈ + b

(
mcan +

Ican

a2

) (
cosφ φ̈ − sin φ φ̇

2
)

= (m + mcan)g sinα, (48)

(Icm + mb2 sin2 φ) φ̈ + mb2 sinφ cos φ φ̇
2
+

(
mcan +

Ican

a2

)
(b2 sin2 φ φ̈ + b cos φ s̈)

= −mgb cos α sinφ. (49)

These equations are complicated, but when mcan and Ican are small compared to m and
Icm of the “beer”, they simplify to those found in sec. 2.3 above (keeping the equations there
always in terms of b and Icm). That is, in this limit there exist small oscillations of the “beer”
about an equilibrium, while the center of the can accelerates approximately as g sinα down
the incline, with small “hesitations” once a cycle.4

The case of a nearly empty can, in the approximation of no fluid friction, should be
nearly the same as that of an empty can, with acceleration (g/2) sin α down the incline. Such
behavior was not reported in [1], where even smaller accelerations were observed, indicating
that friction/viscosity is not negligible.

A Appendix: Motion for Beer Frozen to the Can

In this appendix we suppose that the “beer” is frozen in a half cylinder that is rigidly attached
to the can (which still rolls without slipping).5

Referring to Fig. 3, the condition of rolling without slipping is that,

u = aφ, and so s = aφ− b sinφ, (50)

in the convention that s = u = 0 when φ = 0. As the rolling constraint (50) is simpler in
terms of coordinate u than s, we use the former.

Taking φ to be the single independent coordinate, the Lagrangian (17) becomes,

L(φ) =
m

2

(
3a2

2
− 2ab cos φ

)
φ̇

2
+ mg[aφ sinα + b cos(α + φ)], (51)

and the equation of motion for φ is,(
3a2

2
− 2ab cosφ

)
φ̈ + ab sinφ φ̇

2
= g[a sinα − b sin(α + φ)]. (52)

4Ideally, the amplitude of the oscillations of the “beer” with respect to the can could be zero, in which
case the acceleration of the center of the can would be constant, with value g sin α (m + mcan)/(m + mcan +
Ican/a2) ≈ g sin α (m + mcan)/(m + 2mcan), which lies between g sinα and (1/2)g sin α.

5A variant of this case has been discussed in [8], where the “beer” is instead considered to be a solid
cylinder of radius r < a that is somehow rigidly attached to the can.
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A.1 Static Equilibrium

A stable equilibrium (with φ̇ = 0 = φ̈) exists at angle φ0 related by,

sin(α + φ0) =
a

b
sinα =

3π

4
sinα, (53)

using eq. (52), and recalling eq. (7). Here, the center of mass of the half cylinder is directly
above the point of contact with the incline,6 as illustrated in the left figure below, in which
the law of sines tells us that b/ sin α = a/ |sin(π − α − φ0)| = a/ sin(α + φ0).

This equilibrium exists only for sinα ≤ 4/3π, i.e., for α ≤ 25◦, and also only if the
coefficient μ of static friction is larger than tan α.7

A.2 Small Oscillations about Equilibrium

To identify the angular frequency ω of small oscillations about the equilibrium at angle φ0.
we consider motion of the form,

φ = φ0 + ε cos ωt, cos φ ≈ cos φ0 − ε cos ωt sinφ0,

sin(α + φ) ≈ sin(α + φ0) − ε cos ωt cos(α + φ0), (54)

for small ε. Using this in eq. (52), the terms in ε cos ωt tell us that,

ω2 =
gb cos(α + φ0)

3a2/2 − ab cos φ0

. (55)

If the “frozen beer can” is launched with φ(0) = 0 = φ̇(0), then it does not roll, but
executes oscillations with frequency approximately given by eq. (55).8

6This contrasts with the case considered in sec. 2 where the half cylinder slides without friction inside
the can, and a stable equilibrium exists only for α = 0.

7This follows from the right figure above, where the horizontal components of the forces obey N sin α =
F cos α ≤ μN cosα.

8This can be verified using Wolfram Alpha with input (1.5(3)2 − 2(3)(1) cos(x))x′′ + 3(0.5) sin(x)(x′)2 =
980(3 sin(pi/18)− 1 sin(pi/18 +x)), x(0) = 0, x′(0) = 0, which corresponds to a = 3 cm, b = 1 cm, α = 10◦,
φ(0) = 0 and φ̇(0) = 0.
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A.3 Rolling Motion with Large φ

A solid cylinder that rolls without slipping would have acceleration (2/3)g sinα down the
incline, corresponding to φ = g sinα t2/3a.9

A numerical integration of eq. (52) for the “frozen beer can” using Wolfram Alpha is
show below for a = 3 cm, b = 1 cm, α = 10◦, φ(0) = π and φ̇(0) = 0.

Angle φ varies almost quadratically in time, with a small oscillation about this, as found
in sec. A.2.

A.4 Hopping

An interesting phenomenon not reported for cans rolling with liquid inside, but which exists
for a can/hoop with an asymmetric mass distribution, is “hopping”, in which the can leaves
the surface briefly.

The literature thereon appears somewhat inconsistent [9]-[20], mainly due to varying
assumptions as to the character of the system. Hopping is easier to obtain if the can/hoop
is somewhat elastic (as for a loaded hula hoop), and only occurs when the can/hoop is
rolling/slipping and the mass of the hoop (without load) is nonzero. A rigid can that is
somehow constrained to roll without slipping cannot hop.

This problem seems to have been posed on various British exams in the early 20th century,
as delightfully recalled by Littlewood [9].

9This corresponds to eq. (52) with b = 0.
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The author likes the solution given by Pritchett [12], which included the figures below.10

10Pritchett [12] pointed out that the conclusions of Littlewood [9] are valid only if the mass of the unloaded
hoop is nonzero, in contrast to Littlewood’s idealization of a “weightless hoop”.
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B Appendix: Wheel with Pendulum

Another model of the rolling of a partially filled can of beer is a wheel of mass M and radius
a that rolls without slipping on the incline, with a simple pendulum of mass m and length b
suspended from its axle, as illustrated in the figure below. In this model, the can has mass
M , which was neglected in the previous analysis, while the liquid is approximated as a point
mass m, subject to no friction, at fixed distance b from the center of the wheel

This model relates to the considerations in sec. 3 above with mcan → M , Ican/a
2 → M

and Icm → 0, Then, the Lagrangian for coordinates u and θ follows from eqs. (39)-(40) and
(44)-(45) as,

L(u, θ) = Mu̇2 +
m

2
[u̇2 + 2b cos(θ − α) u̇ θ̇] + (M + m)gu sinα + mgb cos θ. (56)

The equations of motion for these coordinates are,

(m + 2M) ü − mb[cos(θ − α) θ̈ − sin(θ − α) θ̇
2
] = (m + M)g sinα, (57)

mb2 θ̈ − mb cos(θ − α) ü = −mgb sin θ, (58)

Similarly, for coordinates s and φ, the Lagrangian is,

L(s, φ) = M
(
ṡ2 + 2b cos φ ṡ φ̇ + b2 sin2 φ φ̇

2
)

+
1

2
m(ṡ2 + b2 sin2 φ φ̇

2
)

+Mg(s + b sinφ) sinα + mg(s sinα + b cos α cosφ) (59)

and the equations of motion are,

(m + 2M)s̈ + 2Mb
(
cos φ φ̈ − sinφ φ̇

2
)

= (m + M)g sinα, (60)

mb2(sin2 φ φ̈ + sinφ cos φ φ̇
2
) + 2M(b2 sin2 φ φ̈ + b cos φ s̈) = −mgb cosα sin φ. (61)

These complicated equations can be analyzed simply only in the limits that m � M or
m � M , in which case the motion has the same qualitative character as that discussed in
secs. 2 and 3 above. That is, the case of a wheel plus pendulum does not offer any insights
not accessible in the example of a partially filled can of liquid.
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