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Abstract

Ampère’s force law for steady currents was not historically associated with a mag-
netic field, but it could have been. A magnetic field, inspired by work of Helmholtz in
1870, can be defined such that the double-differential form of Ampère’s force law is
a function of a double-differential of this field. We call this field the Ampère-Weber
field, �B, and show that its divergence is everywhere zero, as is that of the usual, but
different magnetic field B of Maxwellian electrodynamics. The curl of the Ampère-
Weber field is nonzero everywhere in static examples, in contrast to that of the
usual magnetic field B. We illustrate the field �B for three examples, which exhibit
patterns of field lines quite different from those of the usual the magnetic field. As
the Ampère-Weber field is based on Ampère’s force law for steady currents, it does
not extrapolate well to the Lorentz force on a moving charge in a magnetic field.
That is, the Ampère-Weber field �B, like Ampère’s force law, is more of a curiosity
than a viable alternative to the usual magnetic field B. If the Ampère-Weber field
had been invented in the mid 1800’s, it would have been a distraction more than a
step towards a generally valid electromagnetic field theory.

After a historical introduction in sec. 1, we discuss the Ampère-Weber field in sec. 2.

� Deceased.



1 Historical Background

1.1 Ampère

1.1.1 Ampère’s Force Law

In 1820-1822, Ampère examined the force between two circuits, 1 and 2, carrying steady
currents I1 and I2. He did not use vector notation, but his result on pp. 21-24 of [1] is
equivalent to,

Fon 1 =
∮
1

∮
2
d2FA(x1,x2) = −Fon 2, (1)

with,

d2FA(x1,x2) = −d2FA(x2,x1) =
μ0

4π
I1I2[3(r̂ · dl1)(r̂ · dl2) − 2dl1 · dl2] r̂

r2
, (2)

where d2FA(x1,x1) is the force on current element I1 dl1 at x1 due to current element I2 dl2
at x2, and r = x1 − x2 [5]. We use SI units in this paper; μ0 is the permeability of the
vacuum [6].

The integrand d2FA(x1,x2) of eq. (1) has the appeal that it changes sign if elements 1 and
2 are interchanged, and hence Ampère’s force law for current elements obeys Newton’s third
law [12].

Ampère’s force law (1) was generally accepted as the proper representation of (static) mag-
netic forces until around 1890 [13], when “electron theory” emerged from studies of elec-
trical discharges in low-pressure gases, and Lorentz’ generalization, Sec. 17 of [17], of the
Biot-Savart force law replaced Ampère’s force law.

1.1.2 Ampère’s Circuital Law

In 1826, Ampère gave lectures that included discussion of the force on a magnetic pole due
to an electric current, noting that the line integral of the tangential force around a closed
loop is proportional to the electric current that passes through the loop, independent of the
shape of the loop [18, 19]. This was a statement of what is now called “Ampère’s (circuital)
law” [20]. While Ampère did not consider the now-usual magnetic field B, we note that the
force on a magnetic pole p is F = pB, so his conclusion that

∮
F · dl ∝ I , where I is the

electric current through the loop of integration, implies also that
∮
B · dl ∝ I .

Maxwell was the first to state Ampère’s circuital law in terms of a magnetic field, via a
verbal description on p. 56 of [23], where he deduced from Stokes’ theorem that ∇×H = J.
Maxwell’s use of H rather than B was in the context of the relation B = μH for linear media,
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his eq. (B), p. 53, where our μ is Maxwell’s k2. See also Art. 498 of [7], and pp. 372-373
of [24].

1.2 Biot and Savart

In 1825, Ampère noted [26] that for closed circuits eqs. (1)-(2) can be rewritten as,

Fon 1 =
∮
1

∮
2
d2FB−S(x1,x2) = −Fon 2, (3)

where,

d2FB−S(x1,x2) =
μ0

4π
I1I2

(dl1 · r̂) dl2 − (dl1 · dl2) r̂
r2

= I1 dl1 × μ0

4π

I2 dl2 × r̂

r2
, (4)

in vector notation, such that the total force
∮
1

∮
2 d2FB−S on closed circuit 1 due to closed

circuit 2 is the same as with use of eq. (1). Ampère made very little comment on this result,
other than noting that d2FB−S(x1,x2) does not obey Newton’s third law, omitting that it
was inspired by the magnetic force law of his rivals Biot and Savart [28]. As a consequence,
the form (4) is generally attributed to Grassmann [15], as in [34], for example.

In retrospect, we see that eq. (4) lends itself to the interpretation that the force between
closed circuits with steady currents can be written in terms of a magnetic field BB−S as,

Fon 1 =
∮
1
dFB−S(x1) =

∮
1
I1(x1) dl1 × BB−S(x1), (5)

where,

BB−S(x1) =
μ0

4π

∮
2

I2(x2) dl2 × r̂

r2
, (6)

with r = x1 − x2. Equations (5)-(6) are a factorization of the Biot-Savart force law (4), and
both equations are called the Biot-Savart law in, for example, sec. 7-6, p. 125 of [35]. The
earliest description of eq. (5) as the Biot-Savart law may be in sec. 2 of [36]. However, many
authors call only eq. (6) the Biot-Savart law (while it is called Laplace’s law in France); an
early example is on p. 220 of [37]. Equation (5) is often called the Lorentz force law, although
it was first stated by Maxwell, somewhat obscurely, as the third term in eqs. (12)-(14), p. 172
of [38], and more clearly in eq. (11), Art. 603 of [7].

The magnetic field B of Maxwellian electrodynamics is the time-dependent generalization
of the Biot-Savart form (6).
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1.3 Faraday

Ampère had no concept of a magnetic field, which originated with Faraday, inspired in
part by patterns of iron filings on a sheet near a magnet [39]. Of particular interest here is
Fig. 3 from Art. 3295 of [42], in which Faraday showed the pattern of iron filings in a plane
containing the axis of a small dipole magnet, as shown in fig.1 below.

Fig. 1. The pattern of iron filings in a plane containing a magnetic moment m. From [42].

This pattern corresponds to the lines of force of a magnetic dipole m on a hypothetical
magnetic pole p as deduced by Poisson, eq. (9), p. 507 of [43] (1824),

F = −p∇m · r̂
r2

= p
3(m · r̂) r̂ − m

r3
. (7)

where r is the vector from the center of the dipole m to the pole p. This was regarded by
Poisson as an action-at-a-distance force, and he did not consider the possibility of a magnetic
force field such as B = F/p that existed in vacuum at points unoccupied by magnetic poles.

Our present view is that iron filings are not magnetic poles, but magnetic dipoles, which
align themselves along the magnetic field B.

1.4 Lord Kelvin

The first to adopt Faraday’s concept of a magnetic field was Thomson (later Lord Kelvin),
who discussed the magnetic field of a magnetic dipole m in sec. II of [44] (1846, age 22).
However, he did not follow the path of Poisson to write B = −∇(m · r̂/r2, but simply stated
that,

B = ∇ × A, where A =
m × r

r3
, (8)
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in his eq. (II) where B = (X, Y, Z), and in his eq. (3) where A = (α, β, γ). This is the first
appearance of a vector potential in print [45]. Like Poisson, Thomson provided no figure,
but gave a brief verbal description that suggests he was aware of the form, eq. (7), given by
Poisson, which agrees with our eq. (8), assuming that F = pB.

1.5 Neumann

Meanwhile, in 1845, Neumann followed the examples of Lagrange, Laplace and Poisson in
relating forces of gravity and electrostatics to (scalar) potentials, and sought a potential for
Ampère’s force law (2) between two (closed, steady) current loops.

For this, he noted that this force law can be rewritten in the as eq. (10) below, which permits
us to write Fon1 = −∇U where, U is the scalar potential (energy),

U =
μ0

4π
I1I2

∮
1

∮
2

dl1 · dl2
r

, (9)

eq. (9) above, given on p. 8 (also p. 67) of [27].

Neumann’s argument was that for a element at x1, dl1 = dr, and dr = dr · r̂ = dl1 · r̂.
Then, for any function f(r), df = (df/dr) dr = (df/dr) dl1 · r̂. In particular, for f = −1/r,
df = dl1 · r̂/r2, so the first term of the first form of eq. (4) is a perfect differential with respect
to l1. Hence, when integrating around a closed loop 1, the first term does not contribute,
and it is sufficient to write,

Fon 1 = −μ0

4π
I1I2

∮
1

∮
2

dl1 · dl2
r2

r̂ = −Fon 2 = −∇U. (10)

We now also write magnetic energy as,

U = I1I2M12 = I1

∮
1
dl1 · A2 = I1

∫
dArea2 · ∇ × A2 = I1

∫
dArea2 · B2 = I1Φ12, (11)

where M12 is the mutual inductance of circuits 1 and 2, Φ12 is the magnetic flux through
circuit 1 due to the steady current I2 in circuit 2, and,

A2 =
μ0

4π

∮
2

I2 dl2
r

, (12)

such that Neumann is often credited for inventing the vector potential A, although he appears
not to have written our eq. (9) in any of the forms of eq. (11).
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1.6 Weber

In 1846 Weber published a force law for moving charges, p. 327 of [49], p. 149 of [50], which
he extraploated from Ampère’s force law (1)-(2),

FWeber =
q1q2

4πε0r2

⎡
⎣1 − 1

c2

(
∂r

∂t

)2

+
r

c2

∂2r

∂t2

⎤
⎦ r̂ (13)

where charge q1 is at x1, charge q2 is at x2, and r = x1 − x2. However, Weber considered
that his force law, like Ampère’s, involved instantaneous action at a distance, and he did not
make a connection between electromagnetism and light, regarding 1/c2 = ε0μ0 as related to
electro- and magnetostatics. Also, like Ampère, Weber had no concept of a magnetic field.

1.7 Maxwell

Maxwell’s discussions of Ampère’s force law, Ampère’s circuital law, and the Biot-Savart
force law were mentioned at the ends of secs. 1.1.1 (see also [13]), 1.1.2 and 1.2 above,
respectively.

1.7.1 Vector Potential

Maxwell may have been the next person after Thomson to publish a discussion of a vector
potential, when in 1856, p. 63 of [23], he related the magnetic energy Um of electric currents
with density J to a vector potential A such that,

Um =
∫

J · A
2

dVol. (14)

In [23], Maxwell considered that magnetic charges might exist, with density ρm, such that
the magnetic field B obeyed ∇ · B = μ0ρm and ∇ × A �= B. But, he did relate the electric
field induced by time-dependent currents to the vector potential as Einduced = −∂A/∂t, on
p. 64 of [23].

1.7.2 Lorentz Force

Maxwell wrote the “Lorentz” force law, F = q(E + v × B), for charge q with velocity v in
electromagnetic fields E and B, as eq. (77), p. 342 of [51] (1861), eq. (D), p. 485 of [52] (1865),
eq. (B), Art. 598 and eq. (1), Art. 599 of [7] (1873). However, these were little understood
at the time.
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1.8 Kirchhoff

Kirchhoff [53], using Weber’s electrodynamics, deduced a wave equation for the current and
charge on current elements (conductors) of small resistance, finding the wavespeed to be c =
1/
√

ε0μ0, where the constants ε0 and μ0 can be determined from electro- and magnetostatic
experiments (Weber and Kohlrausch (1856) [54]), and the value of c was close to the speed of
light as then known. However, as Weber’s electrodynamics was based on action-at-a distance,
and was not a field theory in the sense of Faraday, Kirchhoff (like Weber) did not infer that
light must be an electromagnetic phenomenon.

Kirchhoff’s analysis on p. 530 of [53] involved a vector potential,

AW(x) =
μ0

4π

∫
J(x′) · r̂ r̂

r
dVol′, (15)

with r = x − x′, that he attributed to Weber, who later transcribed Kirchhoff’s paper into
sec. I.1. of [56], with AW appearing on p. 578.

1.9 Helmholtz

In 1870, Helmholtz made a review of electrodynamics, and in eq. (1), p. 76 of [57] (see
also [58]), he stated that a general form for the magnetic interaction energy (his P , but our
U) of two current elements, which are part of closed circuits of steady currents, could be
written as a combination of the forms he attributed to Neumann [27,64] and to Weber [49,65],

d2U =
μ0

4π

(
1 + k

2

I1 dl1 · I2 dl2)

r
+

1 − k

2

(I1 dl1 · r̂)(I2 dl2 · r̂)
r

)
, (16)

where k = 1 for Neumann’s form and k = −1 for Weber’s form [66]. Then, in eq. (1a)
he argued that the scalar U is related to a vector potential (his (U, V, W ) but our A) as
U =

∫
J · A dVol/2, noting that I dl ↔ J dVol, where J is the (steady) current density

(which obeys ∇ · J = 0) [67], with,

A =
1 + k

2
AN +

1 − k

2
AW, (17)

where,

AN(x) =
μ0

4π

∫
J(x′)

r
dVol′, (18)

and AW is given in eq. (15). However, Neumann never wrote the form called AN here,
although this is the form Gauss claimed (1867) to have deduced in 1835 [45]. Both AN and
AW lead to the same magnetic field, B = ∇×AN = ∇×AW, which is an early example of
gauge invariance [68].
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2 The Ampère-Weber Field

We now consider the field,


B(x) =
μ0

4π

∮
I dl · r̂ r̂

r2
=

μ0

4π

∫
J(x′) · r̂ r̂

r2
dVol′ (19)

which has the form of AW of eq. (15), but with the factor r in the denominator replaced
by r2 [69]. We call this the Ampére-Weber field, although it is the invention of the present
authors.

2.1 Compatibility with Ampère’s Force Law

We first show that the Ampère force law (2) for d2Fon 1 = d2FA(x1,x2) on current element

I1 dl1 at x1 can be related to the field d 
B(x1,x2) at x1 due to current element I2 dl2 at x2

by,

d2FA(x1,x2) = −I1 dl1 · r̂ (d 
B(x1,x2) + 2∇[d 
B(x1,x2) · r]), (20)

where,

d 
B(x1,x2) =
μ0

4π
I1 dl2 · r̂ r̂

r2
. (21)

From eq. (21), we have,

∇[d 
B(x1,x2) · r] =
μ0

4π
I1∇

(
dl2 · r

r2

)

=
μ0

4π
I1

(
−2dl2 · r

r3
∇r +

∇(dl2 · r)
r2

)
=

μ0

4π
I2

(
−2dl2 · r

r4
r +

dl2
r2

)

=
μ0

4π
I2

(
−2dl2 · r̂

r2
r̂ +

dl2
r2

)
. (22)

Then,

−I1 dl1 · r̂ (d 
B(x1,x2) + 2∇[d 
B(x1,x2) · r])
= −μ0

4π
I1 dl1 ·

[
I2(dl2 · r̂) r̂

r2
+ 2I2

(
−2dl2 · r̂

r2
r̂ +

dl2
r2

)]
r̂

=
μ0

4π
I1 dl1 ·

(
3I2(dl2 · r̂) r̂

r2
− 2I2 dl2

r2

)
r̂

=
μ0

4π
I1I2

3(dl1 · r̂)(dl2 · r̂) − 2dl1 · dl2
r2

r̂

= d2FA(x1,x2) = d2Fon 1, (23)
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in agreement with Ampère’s form (2).

Thus, Ampère’s force law (2) can be related to field 
B if we allow the force law (20) to

depend on the spatial derivatives of 
B as well as 
B itself. Such a derivative coupling is not
favored in the simplest implementation of a field theory, but cannot be excluded altogether.

The total force on a current element I1 dl1 at position x1 due to circuit 2 is, according to
Ampère’s force law (23),

dFA(x1) =
∮

2
d2FA(x1,x2) =

μ0

4π
I1I2

∮
2
r̂

3(dl1 · r̂)(dl2 · r̂) − 2dl1 · dl2
r2

. (24)

As mentioned in sec. 1.1.1, Ampère’s force law (24) for a current element I1 dl1 (or an
electric charge q with velocity v where q v = I1 dl1) differs from the Biot-Savart/Lorentz
force, eq. (5), on the current element due to the magnetic field B at x1,

dFB−S(x1) = I1 dl1 × B = I1 dl1 × μ0

4π

∮
2

I2 dl2 × r̂

r2

=
μ0

4π
I1I2

∮
2

(dl1 · r̂) dl2 − (dl1 · dl2) r̂
r2

dVol2, (25)

although the total force on a closed circuit due to another closed circuit is the same according
to both Ampère’s force law and the Biot-Savart/Lorentz force law. Hence, the Ampère-Weber
magnetic field does not provide a good understanding of the forces between moving charges.

2.2 ∇ · 
B = 0

The divergence of 
B(x) is, noting that ∇ acts on r = x − x′ but not on J(x′),

∇ · 
B(x) =
μ0

4π

∫
∇ ·

(
J(x′) · r

r4
r

)
dVol′

=
μ0

4π

∫ [
J(x′) · r

r4
∇ · r + r · ∇

(
J(x′) · r

r4

)]
dVol′

=
μ0

4π

∫ [
3J(x′) · r

r4
+ r ·

(∇(J(x′) · r)
r4

− 4(J(x′) · r)
r5

∇r

)]
dVol′

=
μ0

4π

∫ [
3J(x′) · r

r4
+ r ·

(
J(x′)
r4

− 4(J(x′) · r)r
r6

)]
dVol′ = 0, (26)

away from r = 0, i.e., for source currents away from the observation point.

To ascertain the behavior of 
B for small r, it is useful to consider its flux across the surface
of a sphere of radius r, within which the current J is approximately constant.

Φ =
∫


B · r̂ dArea =
μ0

4π

∫ 1

−1

J · r̂
r2

2πr2 d cos θ =
μ0J

2

∫ 1

−1
cos θ d cos θ = 0, (27)
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taking the z-axis to be along the direction of J at the center of the sphere. That is, the
magnetic field (19) for a current element J dVol = I dl has lines of 
B diverging from the
current element in one hemisphere, and converging on it in the other, such that the total
flux into/out of the current element is zero, as sketched in fig. 2. Then, together with eq. (26),

we see that ∇ · 
B = 0 everywhere.

Fig. 2. Fields lines of �B for a current element I dl.

2.3 A Vector Potential for 
B

Since ∇ · 
B = 0 everywhere, there exists a vector potential 
A such that 
B = ∇ × 
A. A
particular form of the vector potential is,


A(x) =
μ0

4π

∫
J(x′) × r

2r2
dVol′, (28)

noting that,

∇×
(

J × r

r2

)
=

J

r2
(∇ · r) − r

(
∇ · J

r2

)
+ (r · ∇)

J

r2
−
(

J

r2
· ∇

)
r

=
3J

r2
− r

(
J · ∇ 1

r2

)
− 2J

r3
(r ·∇)r − J

r2

=
2J

r2
+ 2r

J · r
r4

− 2J

r2
=

2(J · r) r
r4

∝ d 
B. (29)

2.4 ∇× 
B

As noted by Helmholtz, Theorem VI, p. 61 of [70] (1858), to specify a vector field via first-
order differential equations, both the curl and the divergence of the field must be known [71].
For the usual magnetic field B, its curl for steady-state examples is,

∇× B = μ0J, (30)

which is often called “Ampère’s Law” (sec. 1.1.2).

The curl of 
B is,
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∇ × 
B(x) =
μ0

4π

∫
∇ ×

(
J(x′) · r

r4
r

)
dVol′

=
μ0

4π

∫ [
J(x′) · r

r4
∇ × r − r ×∇

(
J(x′) · r

r4

)]
dVol′

= −μ0

4π

∫
r ×

(∇(J(x′) · r)
r4

− 4(J(x′) · r)
r5

∇r

)
dVol′

= −μ0

4π

∫
r ×

(
J(x′)
r4

− 4(J(x′) · r) r
r6

)
dVol′

=
μ0

4π

∫
J(x′) × r

r4
dVol′. (31)

This is nonzero throughout all space, and does not lend itself to a simple physical interpre-
tation as to the source of the magnetic field, in contrast to Ampère’s law, ∇×B = μ0J, for
the usual (static) magnetic field B.

2.5 Three Examples

2.5.1 Magnetic Dipole

We now consider a magnetic dipole m = πa2I ẑ, i.e., a small, circular loop of radius a,
centered on the origin, that carries steady current I , as sketched in fig. 3.

Fig. 3. Geometry for an observer in the x-z plane of a current loop of radius a, in the x-y plane
about the origin.

We calculate 
B at the point r = (x � a, 0, z), with r =
√

x2 + z2. For a current element
I dl = Ia dφ located at angle φ to the z-axis, i.e., at r′ = (a cos φ, 0, a sinφ) in (x, y, z)
coordinates, we have, with R = r − r′,
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dl = a dφ (− sin φ, 0, cos φ), (32)

R = (x − a cosφ,−a sinφ, z), (33)

dl · R = −ax dφ sinφ, (34)

R =
√

x2 − 2ax cos φ + a2 + z2 ≈ √
x2 + z2

(
1 − ax cosφ

x2 + z2

)
= r

(
1 − ax cosφ

r2

)
, (35)

BA−W =
μ0

4π

∮
I
(dl · R)R

R4
(36)

≈ μ0

4π

aI

r4

∫ 2π

0
dφ (−x sinφ)

(
1 +

4ax cosφ

r2

)
(x − a cosφ,−a sinφ, z)

=
μ0

4π

aI

r4
(0, πax, 0) =

μ0

4π

mx

r4
ŷ =

μ0

4π

mx

r4
φ̂ =

μ0

4π

m× r

r4
= ∇ × μ0

4π

m

2r2
= ∇ × AA−W.

Lines of the 
B ∝ m × r̂/r3 are circles centered on the axis m, as sketched in fig. 4, and do
not at all resemble the pattern of iron filings found by Faraday for a small dipole magnet
(Fig. 1).

Fig. 4. Field lines of �B for a current loop about the origin in the x-y plane. The 1/r3 dependence
of �B is not well represented in the figure.

Hence, while the field 
B is mathematically consistent with Ampère’s force law (2) between
two circuits with steady currents, it seems unappealing physically, and would not have been
accepted by Faraday.

2.5.2 Infinite Solenoid

In this section, we consider an infinite solenoid of radius a along the z-axis, with steady,
azimuthal surface current I per unit length in z, as sketched in fig. 5.

We calculate 
B at the point r = (r, 0, 0). For a current element I dl = Ia dφ located at angle

Fig. 5. Geometry for an observer on the x-axis outside an infinite solenoid of radius a along the
z-axis.
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φ to the x-axis at height z′, i.e., at r′ = (a cos φ, a sinφ, z′), we have, with R = r − r′,

dl = a dφ (− sinφ, cos φ, 0), (37)

R = (r − a cosφ,−a sinφ,−z′), (38)

dl · R = −ar dφ sin φ, (39)

R =
√

r2 − 2ar cosφ + a2 + z′2, (40)


B =
μ0

4π

∮
I
(dl · R)R

R4
= −μ0

4π
arI

∫ ∞

−∞
dz′

∫ 2π

0
dφ

sinφ (r − a cos φ,−a sinφ,−z′)
(r2 − 2ar cos φ + a2 + z′2)2

=
μ0

4π

πarI

2

∫ 2π

0
dφ

(sinφ(a cos φ − r), a sin2 φ, 0)

(r2 − 2ar cosφ + a2)3/2
, (41)

using Dwight 120.2 [73]. This is a nonzero function for any value of the distance r of the
observer from the axis of the infinite solenoid. The x-component of the final integral is zero,
leaving only the y-component, which is also in the φ̂-direction at the observer. The character
of 
B is in contrast to the Biot-Savart magnetic field (6) which is zero outside the solenoid
and constant inside (with value μ0I ẑ). For r � a (outside the solenoid),


B(r � a) → μ0

4π

π2a2rI

2r3
φ̂ =

μ0

4π

πm× r

2r3
, (42)

where r = (r, 0, 0) and m = πa2I ẑ is the magnetic dipole moment per unit length of the

infinite solenoid. That is, the field lines of 
B for an infinite solenoid are of the same circular
form as those for a magnetic dipole (sec. 2.5.1 above).

2.5.3 Long, Straight Wire

In this section, we consider a wire along the z-axis, carrying current I .

The Ampère-Weber field (19) at the point r = (x, y, z) = (r, 0, 0) is, integrating over current
elements I dl at r′ = (0, 0, z′),

dl = (0, 0, dz′), R = r − r′ = (r, 0,−z′), (43)

dl · R = −z′ dz′, R =
√

r2 + z′2, (44)


B =
μ0

4π

∮
I
(dl · R)R

R4
= −μ0

4π
I
∫ ∞

−∞
dz′ z′(r, 0,−z′)

(r2 + z′2)2
=

μ0I

8r
ẑ, (45)

using Dwight 122.2 [73]. That is, 
B is parallel to the wire and falls off inversely with the
distance from it.

This result contrasts with Faraday’s vision that the lines of magnetic field B circle about
long, straight, current-carrying wires (Art. 233 of [74]; see also sec. A.17.4 of [4]).
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2.6 Force on a Magnetic Pole

An important insight of Ampère was that all magnetism is due to electric currents, rather
than to magnetic poles as had been assumed by all previous workers. In particular (as
mentioned in [28]), Biot and Savart studied the interaction of a magnetic needle with an
electric current, supposing that a magnetic pole p resided on the tip of the needle, such that
the force law they proposed can be written (in vector form) as,

F = pBB−S, where BB−S =
μ0

4π

∮
I dl × r̂

r2
. (46)

For the case of steady current I ẑ in a long straight wire, the Biot-Savart magnetic field is
BB−S = μ0I ẑ × r̂/2πr at the magnetic pole p at (transverse) distance r from the wire.

If we consider that an alternative magnetic field must also describe the force on a magnetic
pole according to F = p 
Balt, then it is clear that the form 
B of eq. (19) does not satisfy this.
In particular, for the case of the magnetic field (45) due to the current in a long, straight

wire (as in the experiment of Biot and Savart [29]), 
B = μ0I ẑ/8r, eq. (45), is parallel to the
wire, which would imply a force on the pole parallel to the wire, rather than in the direction
I × r as observed experimentally.

3 Summary

We have shown that it is possible to relate Ampère’s differential-force law (2) to a vector

field, that we call the Ampère-Weber field, 
B, eq. (19), which is very different from the
usual magnetic field B of Maxwellian electrodynamics. However, the Ampère-Weber field
has many conceptual defects, and does not lead to a full theory of electrodynamics. Rather,
it is mainly a mathematical curiosity. It is perhaps just as well that the Ampère-Weber field
was not invented in the 1800’s.
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Mouvants, Arch. Neérl. 25, 363-551 (1892),
https://www.lorentz.leidenuniv.nl/IL-publications/sources/Lorentz_AN_1892.pdf

http://kirkmcd.princeton.edu/examples/EM/lorentz_ansen_25_363_92.pdf
http://kirkmcd.princeton.edu/examples/EM/lorentz_theorie_electromagnetique_92.pdf

[18] C. Blondel and B. Wolff, Faraday, Ampere, and the mystery of continuous rotations (June,
2009). See, Was Ampere the author of “Ampere’s theorem”?
http://www.ampere.cnrs.fr/parcourspedagogique/zoom/courant/rotation/index-en.php

[19] P.-G. Hamamdjian, Contribution d’Ampère au
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