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The Lagrangian for this system is given by (excepr b damping Ferns)
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The Euler-]._.agrange equation gives two coupled equations, (e 4dé &:rihg terws here )
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We define ¢, =xi+¥ and 4. =X Xy . We add the above two equations and subtract them,’

Then, ‘ :
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where we used notations = &/m and &= -“L!I"}Ji Assuming that we retain only real
part of the solution we can write 4.= Ae =t and @:Be“"'.|L We put this expression into the

above equations and get,
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where we used X, : “Z (4.4 42 , Yoz %:(f,,——-g;), L= (&&A:ﬁu

-t ot
Iet ¥\ and TF. denote the force acted by the left spring and by the right spring,

respectively. Then, the condition of the equilibrium is,
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Thus, the only possible conditions for equilibrium is either i)
=== F,=-% s

or, ii)
’E\ = E:. = o

Thus, we immediately see that the particle should be on the line which is perpendicular
to the line connecting two fixed points and passes throuéh the central point since the
force is generated by springs.

(a) In this case, there is one equilibrium which satisfies 1i), i.e., the point O in
the figure shown in next page. Additionally, there are two more equilibrium points
which correspond to the condition (ii) as shdwn in the fiqure. Consequently, there are
three equilibrium positions. As to O, since eéch spring pushes the mass m, the deviatio
from the equilibrium point results the pushing of mass m away from 0. Thus, it is
unstable equilibrium. As to A and B, the Lagrangian can be written as,
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Thué, Iagrangian can be written as, o
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which gives the small oscillation frequency, &{+£’1:,g1
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We can be sure that This is a stable equilibrium since the sign of the right hand side

is positive.

(b} In this case, we can immediately see the second condition (ii) can not be satisfied,
since a is larger than the equilibrium length., Next y = 0, the Lagrangian can be written

as,
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We approximate,
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Thus, the Lagrangian can be rewritten as,
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which gives stable oscillation frequency,
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Thus, there is one stable equilibrium and only cne equilibrium.
{c) If a = Lagrangian can be written as,
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Assuming that y is much less than 1O (small oscillation), we can expand,
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Thus, L can approximately be written as,
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The parameters in this problem are amplitude A and “ﬁ;‘ which appears in the
equation of motion,

G+ W =

Sincer there is no dimensionless parameters possible in this problem except pure
numbers, we can simply set,
T= A (55OF
Thejdimensionalk analysis of each sides shows that
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Thus, the period is inversely proportional to the amplitude.
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Now we consider the succesive approximation. First thing we should do is to find
proper form of approximation. From the additicnal dimensional analysis, we find
the form of the most general solution of this equation is,
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where tse® = k/m. Since the solution is periodic, we can Fourier-expand the solution

in the form of (&n by, G 5 youe bmbers )
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From y = -y symmetry of the governlng equation, we find that c, = 0. Addltlonally,

(1)
by the same method, a odd nurber # 0 , and otherwise a, = 0. Here, by successive
approximation", we mean we neglect all dh with n>1 and concern ourself only with the
leading order term in Fourier expansion., Without loss of generality we can set a; = 1.

We put this y into the equation of motion and get, chtr‘ﬁa“*<“ﬂ*'hbv«mm
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comment. This problem is a little bit confusing since the meaning of "succssive

approximation"is not so clear from the context of the problem.
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(a) We consider the half period motion during which the particle is moving from X = a
to x'= a'. Since the speed is positive in this case, the governing equation becomes,
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The above solution is easily solved to yield,
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U51ng the initial conditions,

Xe)=a , X(e)=o
the ﬁull solution is determined to give,
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Thus, the loss of amplitude is,’
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Consequently, the total time required to reach a complete amplitude drop is,
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(b} In general cases, the eguation of motion can ‘be written as,
o+ teg? X T 7 e SgnlX)
where sgn{x) = 1 for x>0 and -1 for x<0. Thus, the damping function is,
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Using the formula derived in the notes, if we write x = a(t) cos ¢>{t}, (
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Usin§ the initial conditions a(0) = AO and 9&(0) = 0, a(t) and ¢ (t) are determined as,
L
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Thus, the solutlon we would like to find is,
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(a) We consider the half period motion during which the speed of the particle is negative,

Then, the equation of motion is,
e, 2 _ . 2
X+ e ¥ = gx

The zeroth order equation is,
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which gives a solution

X = Ay CeSwok



which satisfies the boundary condition x = and x = 0 at t = O. Writing

A
‘ &
=x¥+ g x*, we put this expression into equation of motion and retain only linear

ordéjr terms. Then,

| X9 4ty = e, AT Gt e = "-'-?—_i-&z - f‘;ﬁJ cos 2 Wk
We c.;an guess the form of the solution is x = -‘5; + B cos 2¢,t. We put this into the above
equation to get, .
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Wth'sh gives, , N
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Thus, up to the first order in g, the solution can be written as,
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At t=0, the initial amplltude is,

A4 B3 ats A .

If =0, we get A = A,. Thus, we write A = Ay + Allg . We put this expression into
the ‘above equation and retain only upto leading order in# . Then,

A 3% Acz‘l =e
~ which gives the value of Al =—§A:. Thus, A = Ae ( I-'j",@.ﬁr.,). At <%t = 7T when speed of
the mass is 0 again, the amplitude is,
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(b) The damping function in this case is given by
ef = -prix

Following the conventional method, we write x = a{t) cos 15 {t) and % (t)= - alt) sin¢g .
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From (1), we have
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whlch can be 1ntegrated to yield,
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where we used the initial condition a(0) = A, Thus, the full solution is,
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We are given the equation of motion,
QU e Ml 4 f )
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Now we set,
U = .*i‘.i'é_ ( I+ €le) crsb(8))
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By t}"xe direct differentiation with respect to & , we get
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wherée we equate the derivative with the given form in the problem. We take the”
dlfferentlatlon again and get '
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We put this into (1) and get, L2
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where the second eguation is obtained from(2). Sing (3) + cos¢ (4) gives,
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Assuming that £ is small, we take one period average. Notice also that although € has

£ dependence we can pull that factor out of the integral since it is assumed to be

slow varying. Thus, we get, {
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Now, we set,

- m!:‘?‘{f}"‘)’é =1

£ = .E_‘:‘li d (""O’cHew;m} oA
L . 2= €
Then, , 5¢ gh: 2 _i “ __’f_'o
xR ~ AphT ,
%l ‘# ;;%TEE S; (‘#é:q»’)z£65¢; - 20 E LY -(c e 2gﬁoh‘+¢oﬂ¢5°ﬂyfd¢
Rt = (e w——
. = 2 b= U-TF =)0
e : g L:f’:_:- S (- ecos#s” gind dgf = = €T€
Thus, the orbit equatlon is given by,
' 0
. X "ﬁ’“ e) "
[ : R
/’%'“GF ~
- ’ ! o
The Swing ;0/ 1 A
4 1
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. Wnile the mass moves from 1 to 2, the total energy is conserved. Thus, the angular

speed of the particle at point 2 can be calculated via the energy conservation. That is,
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If ghe mass is pulled from O near the angle & is 0 abruptly, the force acted on the mass
is ;adial force. Thus, during this process, the angular momentum should be conserved. -

That gives,
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While the mass moves from 3 to 4, the total energy is conserved/ Thus, energy conserva-

tiorf gives, ) 24
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Assuming that the motion is small oscillation, we get
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Since this pumping has been achieved during the half period, we can say that
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Thus, we have,
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{b) The Lagrangian of this system can be written as,
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for small oscillation where l=1,(i+€¢m>)The Euler-Lagrange equation gives,
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Putting the expression for 1 into the above equation and retaining only terms of up to

]

the linear order in ¢ , we get
€ 2z el Lot B ARILAR ~ G Ko (o8 20 )

where et =4/g . Now we use the method of average. We assume the solution of the

type,
€= aw s fedy = atxd 208 oek | Bz - Wodcks Sinwok,
The damping function can be written as,
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up to the linear order in € . Adopting the formula from the note, we have,
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where we used a formula found in integral tables,
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Above equation can easily be solved to give,
O k)= Re expl 3 € Lok
Thus,
' e = ee &(F( é‘ 6(435*') ol Lok,

(a) In the accelerated frame with origin at Xy the equation of motion is,

B A R B
where the second term on the right hand side represents the fictitious force due to the
acceleration of the origin. Using X = a coscet, we can rewrite above equation in the
form, ( %= de/va)

B T I I =

We can guess the form of the solution as,
Yz L 4 o ccStot

and put this into the original equation to get,
K (Lot w?) = aws®
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Thus, the full solution is,
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(b} We ignore the centrifugal force. Then, the equation

e Stox

of motion is (due to Coriolis force)

-
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Clearly, since the particle moves on a smooth horizontal
plane, only the projection of angular momentum along
the £ direction can contribute. Thus, the above

equa£ion can be written as,

w\ ﬁ'\:’, = — 2Mces® ) ?-x'J
Thus the angular frequency of the motion is £41%5® and the particle moves in a
circie.(See p. 170 of notes) Thus, the radius of the circle is,
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(a) Since the plumb is not moving, the forces ¥
concerned are pure gravity and the centrifugal ?

force which are depicted right. Referring to
the right figure, we find that

g MR 5t B o® . Sin(do=6) £ind cofO 2.0
wl —_— — I NS = =
S -‘%L-mksiaew* wiqo-) 9/ntr ~ 5n°C 8

This procedure can be justified since the sum
of the two forces forementioned should lie
along the direction of the plumb so that it

|2 daped = i 2
can be balanced with the tension. it hRms{ﬁzﬁ,>

(b) The Lagrangian of this case can be written as, ¢ of ; hessared on enrcch)

Y . v 2. [ 44
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Thus, we can directly see that the effective potential is,
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Now we require that the surface of the earth to be the equal l’gsurface. Thus,
Gk, 2 oer D : _ qr_—f_’?_""
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v =T Ty
where we evaluated the constant at & = 0, Rearranging the above relation gives,
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Setting & = "/+ corresponds to the choice r= rE. Thus,

2
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Consequently,
2 2
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Tidal Bulge

We consider the potential at point A. The potential
at this point ronsists of three parts, namely, the
potential due to the earth, potential due to the
moon and the fictitious potential due to the
rotafion of earth about the moon-earth CM. The

first part is simply, . 4 y’z N ~2rR «#59)
Ue‘,_,-d.,/h - - _%@—

The second part is, \ )
i
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M. ¥’ ( yip R -2Rreie ) ( | = 2 recs®/R Av VR )

- 7
= - -Gl&M (}‘-% (—2rscie/ R + y-z/kl) - 3/5) (-2_]-;_9}5/12}2 - )
2
= - f’%’_'-( )+ kke;o___ %{5(':;--—4::“5’) 4 )

where we used Taylor expansion formula, (i Ay o bt %){l ——

r
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Since the attractive force due to moon is given by
SMim oA
12}
Rl
where fi is shown in the figure, we need the presence of the counter fictious force,
Lamm @
=R

in the frame where the earth is at rest. (Otherwise the CM of earth should move)

The éffectlve potential for the above fictitous force is,

Sm i Pyt
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Wthh can be directly verified by the differentiation. Thus, the total potential

energy is given by,

qMm’ M’
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Iet Xy denocte the radius of the earth along the certain & which satisfies c¢effée= & 7

As in the prev1ous problem, we require the effective potent1a1 to be a constant. Then,

M _ am’ 3 S _L Jeyr — B4 _ Gm’
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where we evaluated the constant near & =&, . Thus,

€= 3 m -Lg— (Ve can afsune thil 18 cmritank o rovi kptely )
2 ™ R7 . dd e e

Clearly, r, can be identified as a mean radius as the below calculation shows. (
<Y> = F + —é[ g7 (ws’p-g) = Ve
J:HEJE
1f we set our coordinate system as shown right,

the Cartesian components of the angular

ccordinates are given by,
freen; (En), o, o3 X')

’

AL LSmleesapayy, Sinh Sind £ if )) s N)
on a unit sphere. The value cos © is exactly

the inner product of these two vectors. Thus,
(o507 GWN $ink oS- @) ¥ X dos)
We p&t this expression into (1} and use <¢ef 28= 2e0sE = £in20 =25in8 ®56 -0 @1,

Then, we get, (after a little bit: of :aigebra)
...‘;::[‘-l-é {%_lw.s ‘A-—Uc cos PN 1) A+ l fut N S\ N e (A )) + 3 m 2A 62X Ao (¢—¢’)}
The periods of each tides are one month, one-half day, and one day, respectively. The

second part corresponds to the usual tide which occurs twice a day. Notice that only

this part has positive definite amplitude. (
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3 g direstian

St we can neglect the centrifugal force. If we

{a) Since we are considering first order in ' L
[/

chdose the coordinate system shown right, we can

i —
calculate Coriolis force as follows. ks o
! % 3 2 e ? P ed
I A . © |t
awmBAY =_awm|_nue n wse o | =2nvyfuez Y ok of
age .
! i vy Je » P
! ®

Notlce that we neglected the contribution from vx and v since they would be proportional
to ! AL and we are considering only upto the linear order Thus, the equations of motion

are
Wy kg ® 5= 9 TS
Wz 2uNUyShe 3 2z 2 2 Uy fine

From y-component equation, we get y = h -~ 1/2 gt2, We put this expression into
z-component equation and integrate it twice keeping the initial conditions z=z = 0
at £t = 0. We get,

e i S*’lﬂt— 9%) Gmp A/AxT = — .g— £ sime &7
o g
Inserting t = @cb is obtained by setting y = 0, into the above equation, we get,
Jah/g

2 == 'é- »—-—-‘ S 5ihe
Since this quantity is negative (Notice that due to the righthand rule, the positive

z direction is\fa;tward) , the deflection is eastward.

(b) In this case, from y-component equation we get Y =\Vek - & ¢%" = [igh % - 4 gx>
We put this expression into z-component equation and integrate it twice keeping the
initial conditions. We, get,

2e A (2000 (P - o &7 = s sme (Sgik= 5 4 %)

Ingserting t =2 l _2% which is obtained by setting y = 0, into the above equation,
' [4
we get,

2 RLL:E 8;\ J)—gh - '--* J )“ .ig‘l‘f. JL Sine

Since; this gquantity is positive, the deflection is westward. Sirce this result is
invariant 6 - /#0~€ transformation, the result also holds in southern hemisphere.

Of course, this conclusion can be drawn from the more detailed analysis of geometry.

o
V- .
{c) From the angular momentum cnservation, we have,

20
L LRty y® sivie = > smte D= R -~ b
4 4 ¥ Gy F T 2y
Thus, the change in the azimuthal angle when viewed on earth is, (o¢ delwed = the prebles)

Qyﬁ J(¢ Ny X = 595 -k
*' - t rs
= -29_5 9db = - —Rz‘—nj: L Uy A AR

i
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|2

where the last step is valid since y (0} = 0. Thus, the deflection length is given l'

by = .
2 = R $ine (— Q¥

S: gti 20 S0 vy dA" AX

(Notice that the negative sign in the first equation is necessary in my convention.)
This is exactly the equation which was used in the part (b). Thus, two approach
give the identical result. (AP = /REME)D

a) We use the result of problem 10, eq. (1). In this case, both Vg and Vyhave the
zeroth order term in Z2 . Thus, we should retain this contribution in Eq. (1). The

equations of motion, then, become,

.

F 22045 Y 20V eie . X TO
J=-9
x and t component equations are solved by elementary method and the results are
Y= P&/ %, .4y = Zgh k- gx/2
where ¢  denotes the total f£light time, A:2[2h/g . Since at t=0, x =y = 2 = z = 0,
we have,

2= 2RYSe A L0 %0l .
'-}'70(-.

— ¥
27 2zn So ( (Fght-3$at?>ene - T peosto) 4k = 2 [%—n(%hﬁne—l}ws@) ( 3<o ene

(b) In this case, both vyand V2 have the zeroth order term in . Thus, the proper
equations of motion are
X T ~20 3 esp 2= 20 S'n'-e{«}

G =T g-20 sued

The zeroth order trajectory is same as above except for the shooting direction. Thus,

X
2:@): --—-'—'i_éo) v . \j“”: Ve k — _‘%9*2 Ve r—""‘gh p? = ?-rzls/_—ﬁ. b ) X = o

putting z calculated above into y-component equation gives,
12 :

Yy = -4 -t-zﬂsme-r;

We 1ntegrate above equatlon twice and the travel time is given by setting y =0. That is
%o = 2 Vo [(@ —2p Sine /D) = &Y .;n_ Cine D

'I'hus , the position of landlng is given by,
2= —D( 1= &g—smeD o ,,,) + jzn.;mea:) Ak
wmch gives the distance,

l2l= b (4 a0 e/Tgh) = & |2 abene
The deflected lengthalong x direction is, {

= 2N ese S:‘ -*2— b = KD ILese = 2 j__—’zl-" D e
which is southward since it is positive. If shooting angle is small, we can drop the

second term in (2).



