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“PROBLEM SET 5 1

i
We wi}l use elementary method to solve this problem.
Referreing to the right figure, the vector from the
central mass M to the edge of the circle where the string
passet through is given by,
LI Yn$ s LodrOn- XIK 4+ Casin®n =) ;’ (hzi~ND
Thus,! in Cartesian coordinate the force components can O \
be wrhtten as ol %
Xw NGy )

i L’ITIS‘:- R ]0".*"*’ e . .
in tel of tension Tw of n-th siring. Since the length

of eaé:h string is constant in time, we have constraints,
j,—a,,’;} 4Ry = Lo cmbtox,

Now, Newton 5 3rd law gives us
fV\ [ =My -& T
MX = 2;:. g\x . E—Fny =M7‘

Combining these two equations, we get, .
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Mtk yn
!.‘Q.l, = - _’f‘l‘xh '+Y"l Fn ""'":(ha-* Yh A {LXun Xu 4 v, y“

v (> 3> )

We re‘tain only linear order term in x and y (which correspond to first non-vanishing terms

to get, s
! K" I' 63«7)9:,— Rt 9n>( — wg.,fl.s;,y + 7)/4,;9,,;,;,9,, —_— %.ﬂk Q'x)
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From ithe geometry of this problem, 9~=i,-—§", we have,
‘z o ¥on = T Sven v = % Shhepirsey
i W i
Addit.lionally we can show that (see comments)
I‘ $WBn s L lestOn = _};L
for n>2 and Znu"e=-o Iu.,?s.-.-.zfor n=2. {n; integer)
Thus,' the equations of motion becomes simply,
' (HE)%+ 2L x=0
| CH B+ w y=°

for n>2 and
N sx -—'0-

Ly Fyme 2
for n=2. Consequently, the angular frequently for n>2 case is,”= Jau;ﬂ.n,) (same frequency
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for x and y direction} N=2 case, we find wW*9 (longitudinal oscillation) and w= JT

(trarisverse oscillation).

Some

comments. 3 bty plod
1. Calculation of Z -LLS‘M’" wtow) , Ens KN T
ea.. "AB" 2‘ *e"
One trick is to change Sbn® =2 and «¥6u = 3 . ‘Then, for example,
w:»—-——- - g (eKP(%V\')"}z -+ e"PC"* 14‘-’“))
We 1nned1ate1y flnd that resulting series is nothing but a simple geometric series
Cm PP Fg.. N AN sl /" ne2
. LI et ”
with = e J‘ ) 'I‘hli.i; Using the formula, 2. »m2
— 7 *
!=f,—:-:—~ do rd2 | SN &oreg,
which can be easily prog5 , we get, (4= ;;) ;:ﬁ\\\\\\///
- oMb Ly Loopla M) o ep (L)%, e, MNE2. IEQ- =2,
LY J—?.;tf( ﬂ'}

Sometimes changing trlgonometric functions into exponential functlons simplifies
calculatlons. At least you don't have to memorqz} ’%‘igqnometm{c function formulas.
2 Almost all students solved this problem assuming simple ondi dimensional motion.
aHowever, it must be proved that for small oscillation the effective potential is
spherlcally symmetric. In fact, the central force nature of this problem is qu:.{
'non—trlv:Lal consequence of the symmetry of this problem. For example, consider

?the case depicted right. In this case, (#%H% “}d[?
T mses = T SO = T cesOnsihPa =0 pKed,

!

However, we find that,

L ot on = Gt *® ok ’2'—"""9'" = gosuot

Thus, we hace two frequen01es rather than a single one.

‘The system we've considered does not have enough symmetries, whereas the origianl
problem has degenerate frequency due to the higher symmetry. In general, if there
are n-coordinates in small oscillation problem, n different frequencies are possible.
However in the presence of enough symetries, some of them are degenerate.

(Think about the reason why I choose 4-masses exanple rather than seemingly simple
3-masses examplel)

The kinetic energy of rod can be decomposed into ‘Jf,' B

center of mass motion and the rotation about the . e

center of mass. From the right figure the CM 1 pene &
tranélatlon energy can be written as (Z&ws 5 dna®) L2 Cm (00050, 6 009) :

since the rotation direction and the plane containing
glzrnc are perpendicular. The rotational energy can

C Lkebt o e brieslon? o
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be written as, X’
Imi 2,
§ (g 4 4 (her) Cremied
where|we projected our angular momentum <% into
, r-o‘ ('ﬁl\in red)
two akes X and Y and we used the fact I,,=0 and
Iy = -Nu?. Thus, the total Lagrangian can be
writtén as,
<
L= T /ﬁ@‘ -4- A M‘do.l’b_]z".i—k»’a UG
The Euleeragrange equation gives, .
L
Eg 3 ;;L o = E%M"'o = - -A.}u;a.r-\e -+ "‘\yadn.fe

9
Thus, the effectlve potential and effectlve mass can be obtained to glve

et = %
: Veg-_—jim do=-—_—;-‘w‘uxw-'~;am
The : ilibrium location is determined by réquiring,
Avat),., = sl mya - Lo’ s40) mo D 805 F o oor T
The effective spring constants are,

( &/p Z—', /:ﬁ/ -—-M*(ﬁwoz.‘u‘woh— ).Z)—\'(;anco)ﬁcﬂ)

2 3
NOth that for s 4 33 -;3—' is stable equilibrium (corresponding Jw>0) and for =%> 4—}

’*“"’;&'31 stable eqlllbrlum, which is physically reasonable. The small oscillation fregquency

is, "3‘ g tast
b= Tk et = gk (=35 ) ee=%

, 3%
,4?‘-'—'— (.0,(;9- .ﬂr" = ﬂ..a- ( ' - Ca—.a%-)z') &) Bozj;h-‘w

5. The Lagrangian can be written as,

Us= J?:hu.r Ar2e™) + 9

Thus, | Buler-Lagrange equatlon gives, <
2

L
al-rwwe +k—xs‘ zo 2wtz o7 Py
For exact circular orbit, RHS should vanish since there is no radial motion. Thus,

we have, - .
L— - } (";"" - # ,r_ p - —-_“M
hdro'? e ! © Lz-

(cf. Notice that we should require (o for Yo and c.<e for A<® , to have circular orbit.)

Now, we consider the small oscillation about r = XYe. Putting r=lowal; we get

- —i? L
hAl':f(“”_, )F""’")jr i "":'f—r"‘;‘(}\ -2 &r Loz ter

up to;the leading order inAr . To have a stable equlllbrlum, we should have negatlvev

term in RHS. Thus, we get
W2

Writing Lamrs'o., the above equation reduces to
H
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where

as is
[TEY

we ge

The graph for some closed orbit cases are

r

v, s N

Neb-r, w= 20

OF = - Lrar
Wiy . By properly choosing phase, we get the solution,

Y= Yol 4+ € oot
familiar. From the angular momentum conservation,

. . < .
2Tl mempeA = Iyt 0 2 OF :’a_ﬂz_n_(].-g_emswi) Clandivg e du Teylor ®rpuysion
L,
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[ ortanr
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Commeht : In attractive central force case,1jmyshould concave toward the center as shown

in lecture notes,

{a) The equation of conic section in general is given‘by (Goldstein, p. 96 Eq.(3-56})

From

JF—_cc_H-%obe) €=x41 1 ehis code,
the figure,er at &>, Thus, C is C=w£ . The angle at which the parabola meets

a circle of radius a satisfies,

AL ey
o= 2P (| ees0) £ )0 =

(b) From the note, the eccentricity is given by,

Thus

I
€= i+ e

¢ gives E=o. (cf. Hyperbola denotes a particle having asymptotically free, i.e.

posit?ve energy. The ellipse denotes a bounded particle which has negative energy. 7

parabbla case, consequently has zero energy.)

l

(c) A% the particle moves around the perihelion point, the position vector from the sun

i



to the particle is perpendicular to the veleocity at that time, Thus,
L= myie = Hr‘Ul\_
From the energy conservation with the total energy 0, we calculate v.

/H .
- %_h—+ "‘::""“Jx,rap# U= F%“Tl"-i’
L= WJ?—GMP

(d) From the angular momentum conservation, we have,
mrib= | b e, 9 dﬁc“"‘ Ao

Using the trajectory equation derived in (a), we get ( % = -2%, i 2019) )

O =
Thus,

f_li- GuS 1o
(c£. integration in r variable is easier than integration in variable.)
Thus, d
- e r = ¥ __ J
o= L. Sike ’): Jrp—1 &

Thus, the time during which the comet stays inside the orbit of earch is

& /P =D+
'T' _2. EF'S %—-d\r C'Filct‘ﬂ--z rab if tuwo-is -'onerPrlvj

22 ¢ o= (ﬁcwp-uup\ =25 }a‘% =% o 35

where we used L derived in (c). To maximize time, we take,

gg:o =3 —--l--'(... - Pt ~2Pla) P 7 -é;a

Thus, the maximum time is,
- e ]

From the note, we write the down the orbit equation,

2
%,U—\-U.: - Lzu*t(u)
We are given}:--—‘:} . Thus, 4 fe : o
a"‘jM*-u--‘gi‘ = a;;u+ Cl- TE)U=e .
We define
Me
@ ‘l"' L"]

Thus, 1) if \—U,CD then (1) becomes,
dz TR pz = e
whlch have the well-known solution,

\

A= '-L‘ (...9;3{_9— Go)d - v=p 'F rBWSFQ (we ok Bo =0
ii) if , then (¥) becomes
- _s/_‘ o, '

B gt Te

which can be trivially solved to yield,
Lo
U= - + A0 @ v v



iii) If 1_ -“1{<o, then (1) becomes, "

which can be solved to give,
Lz AeF AR =
!

In case (ii), if A=0, we have r

in problem 5, this is a unstable
= Me < nat

i.
t

e J— - e Lpr
Yo

= Yo :constant, i.e., 01rcu1ar orbit. As we've shown

orbit. In this case, from the condition in (ii), we get

r"‘e —me

(cf., You might have trled to obtain r-r(c) amd 9 6 (c). However, the above relation is
the max1ma1 information. ) One cautionary comnent is that to have three classes of

solutions, we should requlre c >0 since m>0 and L 50, obviously. Thus, in case (1)
ﬁ < 1. 1In case {iii), there is no restriction in g‘ We 1list some typical graphs.
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9. From the orbit equation

f Ar U = ~ ooE F e

a.r]d —-"‘rb Fz—. r we get,
AU+ Ust T T AU *epu?)

s mE
= .a‘%u 3 pPu= Tx whee 22 1— T3

This 1s a simple linear oscillator equation with ,inhomogeneous term. The solution can

tr1v1a11y be obtalned to give,

l.A'- L_’-FJ.

The above equation can be rewritten as,

o te ]
r 6.C \—e*)

& Compipax

4 comistak k:upa (A}

2

X (
The angle required to complete one radial oscillation is B whereas the angle required .or

onefpsc111at10n (If we can say some orbit is precessing!) is 2% . Thus, the perihelin

wrbital
advances angle,



1— B

-v),ﬂ-_, =1 x

per one circul
"{‘ ‘é“d' because,

S v = R Al
B = MT—sm/> =
Thue,

we use the information,

0.24 year.
R SN TS: S
77.. 3 -6ty D
10, (a) We represent the give
Ve - g - 7

i adding

R A
&= 0.206 and the period of

: -1
Setting &B= mmb

et
ar motion. If we assume € is not near 1, we can assert that -3%‘.\. wheh

ﬂT'P ¢ Froe compoxing €V L0 X
P.\. 1— -ﬁ-—AF =5 F‘:!/(\'f;ze-f)ﬁpzi-ZI-ﬁ’*
= \'__

oY
1.
orbital motion of mercury is

which corresponds to 40" per century gives,
o= |.axe .

n potential as,

(e=%)
‘centrifugal potential is,

Thus, the effective'potential given by
B

Ved > JJu-(" N =
The circular motion radius is determined by, . 2
d Ll B _ —_. . .?-1_2 L
U%’ =0 ’-’} "s = e A & = éﬂ‘f t ras
J- rety ro Ahrt = '
The effective spring constant 1s given by,
32 .A e L-z IY .--—l?——
%&U#}rvro = k,”.q, -2 _P--;-:; = hMah;" - ro b
where we used (1). Thus, the small radlal oscillation frequency is, ¢cL= M-.ha"-n’a')
- }DZ g . o - £ Gramk
w =g = 2 Y- ey = 2 ,'ut,r-ﬂv“t‘&'
puring one ?»?;\*f’?i motion the time lapse is &= . Thus, The phase -;;-ﬁ. is passed in
F' S
aagf oscillation. That gives precession angle per one orbital motion as,
* b ~
22y -2 -27\-((]_—_\_ wio )= en o o g MR
AT 2wt E 5 Tty
Sett:.ng abranysT (from problem 9) glves
J‘L Yo¥F 48
2 =~ H(fo Cusitg M &R givew i o p'b.l-tm. >

AR Gae

(b} h)irectly integrating the glven force

- Gl‘""‘
t=- ClI rc)'*')
gives the potentlal, CF =~ V\-’?
Ly S e bt =
: e .
Thus, we set A= GMMs and B A. .__.L-- . Then formula we derived in (a) becomes,
_2_—2_?_’.1'1- ~ X 10" A sldlae 40 KAXITT)
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