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1. From the right figure, we find the object should move the x> g
distance [
L= d/snb ® ™%
The motion is determined by
w82 9k = bag oSO = Lix = 3 §X® i 4

where we assume the mltlal speed is 0. Thus the time of decent is given by
& -I__giﬁ_
roraial- gcose -kd = kd YATPAT
To minimize k4 , we require 79_* Ao to get o= (o8, which tells us that the optimal

angle is 45,

2. The expression for Surface area is given by
%= Sﬁ-’\'nc’& where  Ja*= > 4dy®
which can directly be seen from the figure. Thus, our problem is to find the function
y= y(x) that s,
J:z?t'xd& = Sz’t%.'dwﬁ-&éty- = SK 2?¢’ch"& = ‘L L dx
is mlnlmlzed ( y'"—%i }  From Euler-Lagrange equation, I
FFL -8 e 2 () =e
The dlrecjc 1ntegrat10n gives

il MY
TTa9s

which can be rearranged into
y'= I YAET'S
Thus,

Y = j,h‘d'x :Ajdee-Hi = 9:9_’4—1_? = %= Acoshy—BI/A

a‘x

mc~ Accsh®)

3. We consider the small element of the rope.
i+ dxd

e+ dp

"r(-'ﬁ)
From the horizontal force balance, we get

T (k4 dx) CoS(O4AB) = T (%) cos®
which yields, a—%—T cose =0 => T cos® =T, jconstant
From the vertial force balance we get

T (x+dx)sin(§+ d& )} - T sinb

= sin B+ AAb) £ihD
=Ty ( EE2s — ML)
ol (B+dB) osE

jTO;f—B-me de = To aT(ﬁ-y)dk = To y“dx
" Pgar



[
Z
where we used tan ©= dy/dx and @ aenotes line mass density of the rope. In this case
dl =/ax* + dy* = T+ y™ax
Thus, we have
y''/ 1+y! = p9/To ; constant
(b} The only modification in this case is to replace gdl with gdx. Thus, we have
y'' = P g/Te ; constant

{a) We minimize the total energy
E=-PGSDJ1_+’§'—‘;'ydx
under the const;éint
jD 1 +y'*dx =L
Using zhe method of Lagrange multlpller, we consider
—Pg(—Jy]1+y"dx+>\J 1+ vy ax)
From Euler-Lagrange equation, we get, (cf. I'm trying to avoid y'-—5v - L = constant,

assuming you are familiar with that.)
4d 2
o 3g -y iay i}y — 3?}—;{ O Ty ) (
a _
( i*112)+ ‘] "—.—yli
1 =0 Cid

(M= y )m (my; )+ TS
let us set y'=sinh f£f. Then

X X
y = | sinh £ ax + y(0) = | sinh £ ax
® ©
Thus, (1) becomes,

[§}

X
Ssinhfdx—>\=%x-f cosh £ €2
Q
We differentiate (2) with respect to x and get ’
dZ
Tdx?
Thus, £ = ( x + b ) /c. Consequently
J sinh (x+b)/c dx = ¢ ( cosh (x+b)/c - cosh b/c )

From the condition y(D) =0, we get b = -D/2. From the length constraint,

S Jlty™ dx = J Ji+ smh*f Ax =Sok:h_¥:_2fi: Ax = 2cs‘mh-}_2-c—=L_

(comment. To students whom I recommended to see my calculations;
Some students interpreted N appeared above as an arbitrary reference point measuring
gravitational potential. As is well known, the reference point of gravitational potr *ia

£f=0

can not appear in the actual path, I mean, in the actual phys1ca11y?me2$9rable
guantity. The change in the reference point should add some constant (dnly confistant!)
(:£o Lagrangian which does not have any physical consequences. Cee alse comment of Prouemlc
e‘g. Mo g s})ee), \)o;;'tlbv\_'



{b) In this éase, we can write

B=-pgfoyl*yiax- g 172
with constraint

L= (M yraxe1 .
Thus, we minimize

E* = Pg { -Sg]1'+y""ydx+)\58 1+ y'2ax-1%72+X21)
Note that 1 is an independent variable here. Hence,

8 gk - ol 3 -
57 E¥=0 implies A =1

The variational calculation along 0 < x < D is identical to the above calculation-

except for the length normalization, 2
2c sinh Df2c = L - 1

By setting x=0 in (2),A is determined to yvield
A =1 = -c cosh D/2¢ '

(cf. Note that ¢ < 0 in this case)

e N
(a} In sph’fical polar coordinates, 7Y
ds2 = a2 ( sin29 dnpz + de )
Thus the length is defined by <
= Q‘j_-'—'—s—a.
L=a j‘elsm*a-r p't dy
where §' = 36 /d¥ . Since T?{—Jsin‘e +9 't = 0, we know that
o' 2. L - L= ot - J—*\I — $th*®
' - * ‘ ’ — o — v
FYS Fads 10> BMtp4 Bt T T = C ; congront
ThuS‘, &+ StHH
d‘f = 019 -
Snp [smtg—c 2

Using integral table,
' — c tok®
€= fe = s ()
By taking cosine of both sides we get,
C . .
T“_——;(«osenfr\hsa;ocp-cpp) = S COf P PSP, + SIMD Sk STh g, D
From the above figure,
Xz Smecwsy , Y= OEMO SiMY | Bz o s

Hence (1) becomes
C

T 2 = K s p s

,i.e., the equation of the arbitrary plane passing through the center of the sphere.

(b) We would like to minimize

I =Jt' X'+ Y 2t dt
te

under the constraint



—

2 2, 2 2

g=xX +Y¥ -a =10
Using the method of Lagrange multiplier, the extremum condition is
Lm0 -rdke=c s r= HCEY/ 5
34; ?;-F)—k—a‘—-g.-—c :3) :\i'a;(—f-)/"'g“
7é‘re( we—;mu‘spesd-.;z. /m = XfE 4 sess ?aé:.aaAbove relations can be written
as

In case of sphere,

d 'R
By 28 = 5(3)/ 28 = G55
L d 4 4
RGN

(
() = £ m(F)=h=2r
Thus

% = kxf+xf/f,y-kyf+§r%/f,i=sz+é%/f.
Motivated by E?e observation of the above equation that it looks like central force -
case, we defir¥ following variables. (In fact, they look like angular momenta.)

= %y - vX Ly = ZX - X2 , L = yz - zy

By.dlfferentlatlng each L's, we get . (

LZ=sz/f,Ly—L f/f,L fo/f
We Qirectly integrate above equations to get

in L2 =1Inf +cl => Lz = constant: f 2
Likewise,

Ly:AX Ly = BX (A, R e@nstants)
also motivated by the antisymmetry of each L's, we calculate

xLx+yLy+2Lz=. x(yi-zy) + ylzk-x2) + z {Xy-yX)

=0

zX + Ay X + Bx X

"

Thus, we finally get,
Ay+Bx+z=0

If we put two identical springs together in series, the Cieh
spring constant will be halved. In case of parallel Re he

connection, it will be doubled. “phus, the local spring

constant of the infinitesmal piece shown in the figure

isk _ypth % (. b {

local Ino Ad

The local variation of the length is
(R+h) A - RA® = hab V/



Thus the local energy is given by
= 2 - Qo v 243
8 - 1/2 k., (hae)? = 1/2 & $2 (28] hr ol sh
Now, we sum the whole pJ.eces to get 5
P = fae= o0 (b0 X e Lo (r) h*dh
e o kLl [ (49) iy

We would like to minimize P.E. under the constraint

X = éo cos ® dl
We use the method of Lagrange multiplier. Thus, .46
dﬂ(_-é—-, Lﬁol-oz }\w:o)) —----—--(--L Abhot@' iy hws®) =e (e'= "d-_f)
.:;) =
‘3? 2

where w= 12 A /kloho ., If 9 is small, we can approximate above equation as,
-;‘f—— o +wro «xo ,0

We should additionally require thatd" at 1= £ though it's not explicit in problem.

We will assume it and the condition along the 09, at 1=0gives the simple solution,
0= Oreoswd

The general form of §( can be calculated as follows. By integrating (1),

L) = wresn-c 2 do/ IR me, = oAl
where we defined cos b, = c/wo*. After the variable change sin(8§/2)=sin(@n/2)sin¢e ,
we get (after lengthy calculations)

St ik g /s BM -
] = _i_smu 14 “T)(l—sih’ﬁg’ﬂh‘(f) Ve g
= A (FOmPond /oimge) \om) — Fiobuw)
where 1 used

Tle\#)= 5‘( { (= S & sie*p) ™V Ao
incomplete elliptic integral. (See p.322 of Arfken, "Mathematical Methods for Physicists"
for detailed discussions and other sources of information.} Although the analytic
formula looks quite complicated, the qualitative feature can easily be understood.
(1) is a harmonic oscillator with the varying spring constant. If 8 is large, the
spring constant is smaller. Thus we infer that there will be periodic function
which varies slowly than usual trigonometric functions for large amplitude. Thus, the

graph looks like
B s




Thus for & =120° , the curve looks like

{20 .
: \\J% rd®
a .

7. (a}) In cylindrical coordinate systems, the length

\“’

element can be written as
dst= dr*+ das*+ dz*

Thus, the kinetic energy can be written as, %
p = 1/2 m ( Bre rrbe 2Y)

We directly f£ind that £, = 1, fe = r, and fa = 1. BY the straightforward computations,
= (—f;( Ly — AL Yy /b =UnF 2w b )/m = ¥ - rbt

ap= WM 2rr +r* B) Auy = 2D +vB
(

asmzg/m= = '
d the length element since cylindrical

(cf. From the above figure, you can directly rea

coordinates are orthogonal coordinates. If a coordinate measures angle, the

corresponding £ is just the arm length., Of course, in case of usual length, we

. . . ar
= 2=
immediately find that f=1.) Esing \—s‘-HQ Ay
(b) In spherical coordinates, the length element A8
can be written as, ) -
ds® = dr2 4 v > apdet + vrdd* by
Thus, the kinetic energy is . : 7

P = 1/2 MmOt 4+ r20Ta YR eno 49T) ¥
which indicates £,.=1, fg = I/ and fp = rsin® . By the same calculations,
(¥ =y B gEe ¥y Vv sine &>

WM (v 0+ v B — Y2 sinBees g fp )My = 246 + v O -rene @se o

i
ar= -—\"9
aez

ag" W 2riawiog & 2r" $ikpeoO b p t+ F2cint e } mrsing =

2 51hO @ +2Velp 0P +rii eé

8. (a) Elementary Method (



Since the bead can move freely along £ direction, the

constraint force in this case should act along fi direction. A

The total kinetic energy can be written as, 4 ¢
T =1/2 m f*ut+ /2 mr?

Thus,
AT o pp? Y 4 WmEF 2 2ot
ok w

The constraint force, force 3, should be responsible for this
change in energy. Therefore,
F 9=pPrw=o2wd? =>F=2nfw
(b} Lagrange Multiplier Method
The constraint in this case is 6= . Thus, a,= 1 and a, = 0.
The Lagrangian is,

L=1/2m (£*+ '8

Thus, Euler-lLagrange equation gives,

4 by 2y _ = - dtr = wtr

dJ’f( S - T N o -

JLIVGrIS ) _ 3L _Ngp ¥ AT rO42mrvd = 2B
&t e EX)

We can interpret )\ as a torgue exerted by F. (You can readily verify this assertion
using the definition of generalized force.)

F=A/r=2mw

let us consider the speed at point A. It consists of

two parts due to the translational motion of CM and the
instantaneous rotation about CM induced by 'i"’ Thus,

-\.f‘ = Vem — 06 a' e
Since F can do no work, O
P9 = -F"-\?;M-— asF , A
= Fr (Jem R 4+ Ty Qur P2 -46F 2
= L (-5u0 d"-{-w:B —al)=o
Hence, we have the cor;ftraint % #
add = -sin@ dx + cosf dy cid

The Lagrangian in this case is,
L = T = translational + rotaitional
c2m (K P r1/2 188 = Smix iy 4 gwbiel
Consequently, the Lagrange equation becomes, under constraint (1),
%= ) sin @ , ¥ = -hcosB &= am* 2 (2.2



Referring to the right figure, the velocity of
the point A reads

% - component ; v cos® = k + a sin® e . (3D
y - component ; v sin® =y - a c@5® &
Combining (2) and (3), we get T /\g directim of "GF ¢
$ = Ueose — Vw0 8- 0bsub— ~ 08 cos® = £MB A when 8>0. *®
¥ = U skb ¥ Vo e Y a® 56~ a0 25mp = ~ 4o €6
Now, (4) cosp + (5) sin®& and = (4) sine + {5) cos & give,
= aéL ) d\"!.a"é*’\)"é:"
where k = 1 + Y/ a*®
Combining these two equations yields, al
&
-4* 2 1D A6y A2 (2) = 1)# — =A% (6)
J,( i_d()oaei()a—rc o
We integrate above equatlon as follows,
b de . 4 /
8o j C.y Jdd=—3-°<:#—xo—,-> 2= o corh g (A to)
Thus, (e=178 CCE:““’“ (
. C .
= ————""" =
6= ek dﬁ/ doch 'f‘
where we set t0 MO. {6) can also be integrated as follows.
S . = - - = 4 = & - .)
1f wecr.ég{uire 6 =0at t =0, weget B “
g, =0
DA e =S = £
S O= TR Cwsi. (v
[
Now, v can be written as,
ve=-aklbd/® = cak sin®/k ( From (7}, b=/ sindlh B) "

cak [1 - cos*erd = cak .}wdﬁ-cuk_.l / coch ck/&)
cak tanh cx/k
Thus, the graph of v and § is given by,

)

NI¢ ok
C& Ly . c 3

\




From (7) and (B), we obtain tan © /k = sinh ct/k which shows that if t is large,
e EJ‘ and that if t is negatively small, e=-~&
Now, let us consider the behavior near t = 0. - Notice that x and y appearing in the

problem set denote the coordinatesof the point A. Thus,

%%’ & —g‘% = Vese + F = ok tons/k cos®

__%;’_ B = weine- L. = Gk-taus/k sine
= 5 ) N
where we used v=caksin® /k and @ =c cos@ /k.We expand both of above quantities

using Taylor expansion. The leading order gives, (O6=e® when % =ze)
a d 2
Thus, we immediately find that (o¥ k=o)

dx - 4o _ 42 o a ,é.’.'. co o U5y =230
6  de T 7= % Zes X . 217 .

By the straightforward calculations, we also find that
;.
Kinetic Energy = L w i <y*9 4 Lmbre
a 2 L
fuvt BR2a20

A L2 )2,
ch,o-k

3

and a2
. . - w C 2 &
F=XNz-mlubtan)-= “'Z"T““ 7
(a) The Lagrangian can be written as,
L= Iwmar?+v?6%) - kyrooce ’ M
with the constraint g

r = constant
Thus, Euler-lLagrange equation can be written as
%(—3;1,)-- e S TP
4 (21~ L =w d*(r)é)wn-gr;‘me =0 i
From (2) , ©= 3 ¢in® . We integrate this to get,
z & ﬂ: Cl-es®)
where we used the fact 6 =0 at t=0, 8=0. Thus, from (1),
AT hvgza;e-mre = Wrj( 3ces0 - 2)
We can interpret this » as a normal force. Hence, A =0 gives,
loso= -32:"
Comment. To those whom I recommended to see my calculations,
Consider the following argument.
"1, =P« V., Assume that T and V don't have the explicit time dependence.
Furthermore, if T consists only of quadratic terms in generalized velocity, the total
energy T + V = E is conserved, That isL =T +V - 2V = E - 2V where E is constant,

caxr 1 Tri1la Far ovammle . Then . Taorandge'e ecuation agives



4 _ 3 2
2 (E L)y~ 2rL=2gVv=on

- - your mistake is basically identical to this (apparently) wrong arguments!

(b} The constraint in this case is
bo=oal@-5) ap
and
v = atb  senrovk, )
because bp = ax (rolling without slipping)
and @=p%@. Now Lagrangian is given by

L= %wcr‘-"+t—’“é2) +:§_-I(_'P2‘—h\9 v los O
Since we are interested only in normal force, we consider only one Lagrange multiplier
con&erned with (2). (Caution! This is possible only when two constraints are
completely decoupled as in our case. Think about the detailed reason why this
ad hoc omission of one Lagrange multiplier works.) And from constraint (1), we
rewrite our Lagrangian as,

L:%h«‘?l-k-élmr*'e:-l' Lz Q%féz—wrcoce (
(Caution! It is very important to note that I write in one place a+b :Emd in another
place r though they seem identical in view of (2). They are NOT identical.)

Thus, Fuler-Lagrange equation gives,

A LN _ L _ L b -
;(3;)*3’;7““\’-‘”5 + Wty los® =\ (3D
4 ; o- O e RPN 2 2 €346
7&(3—_9-)#%; =L (rie+ —5-_66\-&&) §) — g réeme= o
where we used the fact that the moment of inertia of sphere is
2
I=2/5m

Using {2), (3} becomes,
N . . 2 . -
%B: ——351‘«9 = & =-§)£-%—C.l—"”$9) {e Ou)!leu't ©)

]

PN S AR g (oo~ £
Now, A=0 gives,

lose = 2
(a[ Tor wore detuiled @lanstons, see P.3’14~3'73. o Mechonics™ | ¢puen , 3rd editi=r. )

{



