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1. {a) According to the page 236 of. the note, the shifted frequency for strings with
two ends fixed can be.written as
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In this case, the perturbed density is
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Thus, above formula gives b
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2. {a) We should sclve thelwave equations (C¢y,2 -"-,i“r/q?,te)
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for 0 < x < b, and
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for b < % < 1 with the boundary conditions,
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Following the conventicnal methods, +he solution for the above equations can be

written as,
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Since the string should be connected at x=b, we should have the continuity of s.

Furhtermore, since there is no mass attatched at the connection point, the.transverse

component of the tension should be continuous. This implies the derivative of s at %=b

is continuous. Consequently, we have’
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(b} Using the same formula as used in problem 1, we have, fuop » _‘,%,c)
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The perturbed density 1n thls case can be written as,
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Thus, the direct integration ives, a)c
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This shows that P an=nb
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We can immediately see that the above expression vanishes as we set b = 1 / 2.
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For transverse oscillation, the kinetic energy can be written as,
T =4fdm 32

whereas the potential energy can be written as, (d@; lengeh element)
v= T fdf

where s denctes the transverse displacement and we do not care about the constant

term appearing in the potential energy. In spherical polar coordinate, the length

element can be written as (of, Notice dhe dehinsion i §) .
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and the mass element dm is
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and the transverse displacement is.
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Qhere we refer to the right figure to
get ‘the result. Thus, the total Lagrangian can be rewritten as, (&= 3315 , e’ = -%9)
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Since we are Con51der1ng small oscillation, we expand the above expre551on to retain
terms only up to the second order in & . Then, (st =1~ Jz 4o o5z - e
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Thus, the Euler—lagrange equatlon gives,
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By assuming the solution of the form
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we have -+ N
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(a}f For small transverse oscillation, the string is in equilibrium approximately,

as ilong as the vertical force balance is concerned. Thus, if x is measured upwards
froh the bottom end of the string,
ension at x’T(x) = gravitational weight of the string hanged below x = P g X
whefr $ is the line density. Since the transverse component of tension at point x
g - !
. = , the equation of motion is glven by
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where s denotes the transverse displacement. By setting
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(1 ) reduces to
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Since % = it we have dx = 2z dz which implies,
Thus, (2) becomes:
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(b} In thlS case, relevant expressions for the kinetic energy and the potential energy

which are valid in small transverse oscillation is,
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Thus, their tlme average values are .
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for s=f(x) coswst. As an approximate trial function which satisfies boundary condition
f(1) = 0, we choose
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Then, the above eguations become, p* o sz-n
(K, 8> < a;f’“‘l I"FCJ?-P x?)* dx = TLpHP P ¢
Cpod= £ 9P j'“zc;ax""'J dx = _E_P QP
By equating the two expressions, we have
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Now, Zp kqv- 0 glves,
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where we should have positive p to have regular f at X = 0. Thus,
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5. As explained in the problem 4, the tension should balance the centrifugal force.
Thus,
TxI= g‘l pv‘_n_"'o\:- = -Pr—-(ﬁ-z'*'xz)ﬁ—a
Thus, the equation of motlon becomes,
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If we set s = £(x) cos wk ; then the above equatlon becomes,
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By introducing z = x/1, above eguation can be rewritten as,
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From the néte, the equation of the motion in this case is, (neglecdi~y bobeidonal IGELD (
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where c¥= AY/p and é’zjg/pﬁi In static case, above equation reduces to
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For x>b, the bar is assumed to be straight. For X < b, considering the clamped
boundary condition at x = 0, i.e., s(0) = s'{0) = 0, the solution is of the form,

g= wxtt gx? oy 48
For the smooth shape of the bar, (notice that the governing equation is the fourth order
differential equation), we require that s, s' and s8'' be continuous at x = b. If we
write ¢= ?x*ﬁ as x > b case solution, the resulting conditions are
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which can be easily solved to yield,
B= -3be, P=-3, g = b
Without the loss of generality we can set # = -1. Then,
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Po use Rayleigh's method, we assume the solution of the form
g LRD = Lexd coswk
where f(x) is assumed to be (1), the position of bar in static case. Now the averaged
kinetic energy is given by
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Neglecting the rotational kinetic energy, the remaining potential energy becomes,
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By equatlng (2} and (3), we have,
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where r = b /1. The value of b can be determined by,
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As an approximation, we assume r = 3/4. Then above expression can be written as,
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In general case, the length element can be written as,
As? & (o> d®)T = (Lro+ I deo+ 2o +(dov’
where we used the fact that the length element should be @df= Yod® . Neglecting

second order terms, we get,
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From p 239 of note, the potential energy can be written as,
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where ds 1s the legnth element given by dA¢as r.d.O Using the expression for curvature,
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where we retained only up to Linear order term and used (1), the aforementioned
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potential energy becomes,
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If we neglect the rotational kinetic energy, the kinetic energy can be written as,
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where we used (1). Thus, the total Lagrangian can be writtdn as, Skt
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The variation of the action can be written as, ¢ L= faf-’ A60 ‘;‘é, ,,5 J,&.QD
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where we used 1ntegratlon by parts and assumed proper boundary conditions. ABove
equatlon tells us that the equatlon of motion can be wrltten as,
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From (2), this equatlon ylelds,r 5 R
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By putting prAYS
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into (3), we have T
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which can be rearranged to yield,
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In case of the square drum, the kinetinetic and the potential energy are given by (
KE= < §ostdxdy
¢y Y dxd
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By setting s = f£(X;y) cosz_k where f(x,y) denotes the spatial normal mode solution,

the time-averaging glves
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For the lowest three frequencies, the proper normal modes are
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Notice that in fy, M lies on a node of the osc.xllatlon and 4&&19 orthogonal to the

modi Using the mtegrals '
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the potential energy part can be munedlately calculated The results are
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{This result is clear recalling the orthogonality) The density cah be put into the form,
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Since the first of the above two terms is contant, the contribution to kinetic energy

by this term ({ B>t ) can also be trivially calculated to yield,
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let ]3 denote the surface mass density and T, surface tension.
Referring to the right figure, we can write equation of the

motion as follows,
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just as the case in p. 245 of the note. Neglecting third order

or higher order terms, we get, 32
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By defmlng C :‘VP , we have
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Then the resulting eguation for f(r) 1s,
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Since this equation contains of r varlable, we see that the equatlon is separated
satisfactorily. Egs. (1) can easily be solved to yield,
h = cosck or Sinwk
4= esno or Sshue

In g, since the function should be continuously matched at @=2 and &+2%, we should

require that n be an integer.

The tlme—averaged klnetlc energy and the potential energy is (for n=0 case)
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As a trial function, we can con51der
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which satisfies the boundary conditions, f(a)=0 and £'(0)=0 provided that pod. By

the direct mtegratlons, we have,
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By setting the two quantities we have, 3
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To minimize «> , we require that g‘-fj'—'o which yields,
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Thus,
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10.

The total energy of this system can be written as,
L
S‘ (W’: C$0OY = kg S Fex26d ) dx = S L dx
Thl.lS, the Euler—Lagringe ecquation gives,
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Since the par is supported at its ends, the solution can be Fourier—expanded as

follows.'b
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Puttmg this expressmn into (1}, we have
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We take f’g““-r ‘t"' to the above equation. Then,
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Referrmg to the right flgure,TVP can be calculated
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as follows. 2 i
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Thus, the expansion coefficients are
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Thus, the full solutxon 1s,
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