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Quantisation as a Problem of
Proper Values (Part I)

(Annalen der Physik (4), vol. 79, 1926}

§ 1. In this paper I wish to consider, first, the simple case of the
hydrogen atom {non-relativistic and unperturbed), and show that the
- ' customary quantumn conditions can be replaced by another postulate,
in which the notion of ““ whole numbers ’, merely as such, is not intro-
duced. Rather when integralness does appear, it arises in the same
naiural way as it does in the case of the node-numbers of a vibrating
string., The new conception is capable of generalisation, and strikes,
I believe, very deeply at the true nature of the quantum rules.
The usual form of the latter is connected with the Hamilton-Jacobi
differential equation,

(1) H(q, %ﬁ):E.

A solution of this equation is sought such as can be represented as the
sum of functions, each being a function of one only of the independent
variables ¢,

Here we now put for § a new unknown f such that it will appear
as a product of related functions of the single co-ordinates, 7.e. we put

2) S=Klog .
The constant K must be introduced from considerations of
dimensions ; it has those of action, Hence we get

. K of
1 H(o K)_p
(1) q ¥

Now we do not look for a solution of equation (1), but proceed as
follows. If we neglect the relativistic variation of mass, equation (1)
can always be transformed so as to become a quadratic form (of i and )
its first derivatives) equated to zero. (For the one-electron problem
this holds even when mass-variation is not neglected.) We now seek
a function #f, such that for any arbitrary variation of it the integral
of the said quadratic form, taken over the whole co-ordinate space,!
is stationary,  being everywhere real, single-valued, finite, and con- -
tinuously differentiable up to the second order, The quantum conditions
are replaced by this variation problem.

First, we will take for /I the Iamilton function for Keplerian -
motion, and show that 4 can be so chosen for all positive, but only for
a discrete sel of negative valucs of . That is, the above variation
problem has a discrete and a continunous spectrum of proper values.

The discrete spectrum corresponds to the Balmer terms and the -
continuous to the cnergies of the hyperbolic orbits. Fer numerical
agreement K must have the value Af2s.

The choice of co-ordinates in the formation of the variational equa-
tions being arbitrary, let us take rectangular Cartesians. Then (1°)
becomes in our case

» (AN 8:,!1)2 (8‘/: 2 21:1( - ez) 2 .
() (35) + sy *\az) ~m\ B =0
e=charge, m =mass of an’electron, 72 =a2% + 2 4 22,
Our variation problem then reads

@ sr=8f[[aya G« + (@) - BamSpp]-0, T

the integral being taken over all space. From this we find in the
usital way ¢ o .
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