A Simple 3-Body Gravitational Problem

Lee H. McDonald
3461 East $3^{\text {rd }}$ Street, Tucson, AZ 85716
Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(August 6, 2023)

1 Problem

In general, there is no analytic solution for the motion of a 3-body gravitational problem. Here is a simple version that permits an analytic solution.

Three equal masses m are initially at rest along the x-axis with separations R. At time $t=0$ the "outer" two masses become free to move, towards the center mass that remains at rest at $x=0$.

2 Solution

For $t>0$ the equation of motion of each of the "outer" accelerate according to Newton's law of gravitation with acceleration of magnitude a related by,

$$
\begin{equation*}
m a=\frac{G m^{2}}{r^{2}}+\frac{G m^{2}}{4 r^{2}}, \quad a=\frac{d v}{d t}=\frac{5 G m}{4 r^{2}}, \tag{1}
\end{equation*}
$$

where G is Newton's gravitational constant, r is the distance between each of the two "outer" masses and the "center" mass, and v is the magnitude of the velocity of each of the "outer" masses.

A first integral of eq. (1) is obtained from conservation of energy U,

$$
\begin{align*}
& U=\mathrm{KE}+\mathrm{PE}=U_{0}=-2 \frac{G m^{2}}{R}-\frac{G m^{2}}{2 R}=-\frac{5 G m^{2}}{2 R} \\
& =U(r)=2 \frac{m v^{2}}{2}-2 \frac{G m^{2}}{r}-\frac{G m^{2}}{2 r}=m v^{2}-\frac{5 G m^{2}}{2 r} \tag{2}
\end{align*}
$$

Hence,

$$
\begin{equation*}
v=\frac{d r}{d t}=\sqrt{\frac{5 G m}{2}} \sqrt{\frac{1}{r}-\frac{1}{R}}, \quad d r \sqrt{\frac{r}{R-r}}=\sqrt{\frac{5 G m}{2 R}} d t \tag{3}
\end{equation*}
$$

With $x=R-r, x$ goes from R to 0 as time increases from 0 to t when the masses collide. Using 195.01 and 195.04 of [1] with $a=0, b=1, f=R, g=-1$ and $k=a g-b f=-R$,

$$
\begin{array}{r}
\sqrt{\frac{5 G m}{2 R}} t=-\int_{R}^{0} d x \sqrt{\frac{R-x}{x}}=\int_{0}^{R} d x \sqrt{\frac{R-x}{x}}=\left.\sqrt{x} \sqrt{R-x}\right|_{0} ^{R}+\frac{R}{2} \int_{0}^{R} \frac{d x}{\sqrt{x} \sqrt{R-x}} \\
=-\left.\frac{R}{2} \sin ^{-1} \frac{R-x}{R}\right|_{0} ^{R}=\frac{\pi R}{4} \tag{4}
\end{array}
$$

so the collision occurs at time,

$$
\begin{equation*}
t=\frac{\pi R}{4} \sqrt{\frac{2 R}{5 G m}} . \tag{5}
\end{equation*}
$$

A Appendix: Another Simple Example

The present example is closely related to the first considerations of the gravitational 3-body problem by Euler in 1767 [2,3]. Another simple example is the case that two masses m are somehow held fixed at $x= \pm R$ along the x-axis, and mass M is near the origin. The equilibrium point for mass M is the origin, and this equilibrium is stable against small perturbations.

The gravitational potential in the $x-y$ planes for mass M is,

$$
\begin{array}{r}
U(x, y)=-\frac{G M m}{\sqrt{(R+x)^{2}+y^{2}}}-\frac{G M m}{\sqrt{(R+x)^{2}+y^{2}}} \\
\approx U(0,0)+\frac{1}{2} \frac{\partial^{2} U(0,0)}{\partial x^{2}} x^{2}+\frac{1}{2} \frac{\partial^{2} U(0,0)}{\partial y^{2}} y^{2}+\frac{\partial^{2} U(0,0)}{\partial x \partial y} x y . \tag{6}
\end{array}
$$

The terms in the potential in x^{2} and y^{2} imply that the angular frequencies for small oscillations of M about the origin are,

$$
\begin{equation*}
\omega_{x}=\sqrt{\frac{\partial^{2} U(0,0) / \partial x^{2}}{M}}=\sqrt{\frac{8 G m}{R^{3}}}, \quad \omega_{y}=\sqrt{\frac{\partial^{2} U(0,0) / \partial y^{2}}{M}}=\sqrt{\frac{2 G m}{R^{3}}}=\frac{\omega_{x}}{2} . \tag{7}
\end{equation*}
$$

For small oscillations in $z, \omega_{z}=\omega_{y}$.
Note that if mass M were in a circular orbit of radius R about fixed mass m, its angular velocity would be $\Omega=\sqrt{G m / R^{3}}$ (Kepler's $3^{\text {rd }}$ law).

The motion for small oscillations of mass M of the form $x=\cos \left(\omega_{x} t\right)$ and $y=\sin \left(\omega_{y} t\right)$ is sketched on the left below, while the right figure is for $x=\cos \left(\omega_{x} t\right)$ and $y=\cos \left(\omega_{y} t\right)+$ $\sin \left(\omega_{y} t\right)$.

References

[1] H.B. Dwight, Tables of Integrals and Other Mathematical Data, 4 ${ }^{\text {th }}$ ed. (Macmillan, 1961), http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf
[2] L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, Novi Comm. Acad. Sci. Petrop. 11, 144 (1767), E327,
http://kirkmcd.princeton.edu/examples/mechanics/euler_ncasp_11_144_67.pdf https://scholarlycommons.pacific.edu/euler-works/327/
[3] S.R. Bistafa, Annotated Translations of Three of the Euler's Papers on Celestial Mechanics, Adv. Hist. Stud. 8, 252 (2019), http://kirkmcd.princeton.edu/examples/mechanics/bistafa_ahs_8_252_19.pdf

