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1 Problem

In general, there is no analytic solution for the motion of a 3-body gravitational problem.
Here is a simple version that permits an analytic solution.

Three equal masses m are initially at rest along the x-axis with separations R. At time
t = 0 the “outer” two masses become free to move, towards the center mass that remains at
rest at x = 0.

2 Solution

For t > 0 the equation of motion of each of the “outer” accelerate according to Newton’s
law of gravitation with acceleration of magnitude a related by,
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where G is Newton’s gravitational constant, r is the distance between each of the two “outer”
masses and the “center” mass, and v is the magnitude of the velocity of each of the “outer”
masses.

A first integral of eq. (1) is obtained from conservation of energy U ,
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Hence,
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With x = R − r, x goes from R to 0 as time increases from 0 to t when the masses collide.
Using 195.01 and 195.04 of [1] with a = 0, b = 1, f = R, g = −1 and k = ag − bf = −R,
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so the collision occurs at time,
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A Appendix: Another Simple Example

The present example is closely related to the first considerations of the gravitational 3-body
problem by Euler in 1767 [2, 3]. Another simple example is the case that two masses m
are somehow held fixed at x = ±R along the x-axis, and mass M is near the origin. The
equilibrium point for mass M is the origin, and this equilibrium is stable against small
perturbations.

The gravitational potential in the x-y planes for mass M is,
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The terms in the potential in x2 and y2 imply that the angular frequencies for small oscilla-
tions of M about the origin are,
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For small oscillations in z, ωz = ωy.
Note that if mass M were in a circular orbit of radius R about fixed mass m, its angular

velocity would be Ω =
√

Gm/R3 (Kepler’s 3rd law).
The motion for small oscillations of mass M of the form x = cos(ωxt) and y = sin(ωyt)

is sketched on the left below, while the right figure is for x = cos(ωxt) and y = cos(ωyt) +
sin(ωyt).
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