Cylinder Rolling inside a Fixed Cylinder

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(August 13, 2013)

1 Problem

Discuss the motion of a cylinder that rolls without slipping inside a fixed cylinder whose axis is horizontal.

2 Solution

This problem is a simpler version of the case of one cylinder rolling inside another rolling cylinder [1].

A cylinder (or sphere) of mass m, radius r, and moment of inertia $k m r^{2}$ about its center ${ }^{1}$ is in contact with a cylindrical surface of radius $R>r$ as sketched below.

The center of the cylinder of radius r makes angle θ with respect to a vertical through the center(line) of the cylinder of radius R.

The condition of rolling without slipping for the inner cylinder is that when its center has rolled from $\theta=0$ to θ, the initial point of contact of the two cylinders makes angle ϕ with respect to the present point of contact, which is at distance $r \theta$ from the initial point of contact along the surface of the outer cylinder. That is,

$$
\begin{equation*}
r \phi=R \theta . \tag{1}
\end{equation*}
$$

The angular velocity ω of the inner, rolling cylinder is not $\dot{\phi}$, but is to be measured with respect to a fixed direction in the lab frame, such as the vertical. That is,

$$
\begin{equation*}
\omega=\dot{\phi}-\dot{\theta}=\dot{\theta} \frac{R-r}{r} . \tag{2}
\end{equation*}
$$

The angular acceleration α of the inner cylinder is then,

$$
\begin{equation*}
\alpha=\dot{\omega}=\ddot{\theta} \frac{R-r}{r} . \tag{3}
\end{equation*}
$$

[^0]The potential energy of the inner cylinder, taken to be zero when $\theta=0$, is,

$$
\begin{equation*}
\mathrm{PE}=m g(R-r)(1-\cos \theta) \tag{4}
\end{equation*}
$$

The kinetic energy of the inner cylinder is, whose center-of-mass velocity is $v=(R-r) \dot{\theta}$

$$
\begin{equation*}
\mathrm{KE}=\frac{m v^{2}}{2}+\frac{I \omega^{2}}{2}=\frac{m r^{2} \dot{\theta}^{2}}{2}+\frac{k m r^{2} \dot{\theta}^{2}}{2}\left(\frac{R-r}{r}\right)^{2}=\frac{m \dot{\theta}^{2}}{2}\left[r^{2}+k(R-r)^{2}\right] \tag{5}
\end{equation*}
$$

Assuming no slipping of the inner cylinder, the conserved energy E of the system, with initial velocity v_{0} when $\theta=0$, is,

$$
\begin{align*}
E=\mathrm{KE}+\mathrm{PE}=\frac{m v_{0}^{2}}{2}=\frac{m \dot{\theta}^{2}}{2} & (1+k)(R-r)^{2}+m g(R-r)(1-\cos \theta) \\
& =\frac{m v^{2}}{2}(1+k)+m g(R-r)(1-\cos \theta) \tag{6}\\
& v^{2}=\frac{m}{1+k}\left[v_{0}^{2}-2 g(R-r)(1-\cos \theta)\right] \tag{7}
\end{align*}
$$

The equation of motion in angle θ follows from the time derivative of eq. (6),

$$
\begin{equation*}
\ddot{\theta}=-\frac{g \sin \theta}{(1+k)(R-r)} . \tag{8}
\end{equation*}
$$

Note that $\ddot{\theta}$ is negative for positive θ, and hence the angular acceleration α of eq. (3) is also negative for positive θ; i.e., counterclockwise in the figure on p. 1. Hence, the force F of friction at the contact point is directed up the slope of the outer cylinder.

2.1 Small Oscillation about $\theta=0$

For small θ, the equation of motion (8) has the form,

$$
\begin{equation*}
\ddot{\theta} \approx-\frac{g}{(1+k)(R-r)} \theta \tag{9}
\end{equation*}
$$

which has the form of simple-harmonic oscillation, $\theta=\theta_{0} \sin \Omega t\left(\Rightarrow v_{0}=(R-r) \Omega \theta_{0}\right)$, with angular frequency Ω given by,

$$
\begin{equation*}
\Omega=\sqrt{\frac{g}{(1+k)(R-r)}} \tag{10}
\end{equation*}
$$

2.2 At What Angle Does the Inner Cylinder Slip?

If v_{0} is large enough that angle θ reaches 90°, then the inner cylinder slips/falls at that angle. The condition for this follows from eq. (6) as,

$$
\begin{equation*}
v_{0}^{2}\left(\theta \geq 90^{\circ}\right) \geq 2 g(R-r) \tag{11}
\end{equation*}
$$

When $\theta_{\max }<90^{\circ}$, the inner cylinder will slip if the friction force F between the inner and outer cylinders exceeds μN, where μ is the coefficient of static friction between the inner and outer cylinder.

The normal (radial) force is related to the centripetal acceleration $m v^{2} /(R-r)$ of the inner cylinder by, recalling eq. (7),

$$
\begin{equation*}
N-m g \sin \theta=\frac{m v^{2}}{R-r}, \quad N=m g \sin \theta+\frac{m}{1+k} \frac{v_{0}^{2}-2 g(R-r)(1-\cos \theta)}{R-r} \tag{12}
\end{equation*}
$$

The friction force F must be large enough to satisfy the torque equation about the center of mass of the inner cylinder,

$$
\begin{align*}
\tau_{\mathrm{cm}}=r F=-I \alpha=-k m r^{2} \ddot{\theta} \frac{R-r}{r} & =k m r(R-r) \frac{g \sin \theta}{(1+k)(R-r)} \frac{R-r}{r}=\frac{k m g(R-r) \sin \theta}{1+k}, \tag{13}\\
F & =\frac{k m g(R-r) \sin \theta}{(1+k) r}, \tag{14}
\end{align*}
$$

recalling eqs. (3) and (9). The slip angle $\theta_{\text {slip }}$, if it exists, is given by the condition, $F=\mu N$,

$$
\begin{array}{r}
\frac{k(R-r) g \sin \theta_{\text {slip }}}{(1+k) r} \\
=\mu\left[g \sin \theta_{\text {slip }}+\frac{v_{0}^{2}-2 g(R-r)\left(1-\cos \theta_{\text {slip }}\right)}{(1+k)(R-r)}\right] . \tag{15}
\end{array}
$$

For the inner cylinder to reach angle $\theta \leq 90^{\circ}$ without slipping, the coefficient of friction must satisfy,

$$
\begin{equation*}
\mu(\theta)>\frac{k(R-r) g \sin \theta_{\text {slip }}}{(1+k) r} /\left[g \sin \theta_{\text {slip }}+\frac{v_{0}^{2}-2 g(R-r)\left(1-\cos \theta_{\text {slip }}\right)}{(1+k)(R-r)}\right]=\frac{k}{1+k} \frac{R-r}{r} . \tag{16}
\end{equation*}
$$

using $\theta_{\text {slip }}=90^{\circ}$ and $v_{0}^{2}=2 g(R-r)$ as the minimum to reach $\theta=90^{\circ}$.
For larger ratio R / r, the coefficient of static friction μ must be larger for the inner cylinder to reach $\theta=90^{\circ}$, i.e., the height of the center of the outer cylinder.

References

[1] K.T. McDonald, Cylinder Rolling inside Another Rolling Cylinder, (Oct. 23, 2014), http://kirkmcd.princeton.edu/examples/2cylinders_in.pdf

[^0]: ${ }^{1} k=1$ for a cylindrical shell, $k=1 / 2$ for a uniform cylinder, and $k=2 / 5$ for a uniform sphere, etc.

