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The topic of decoherence in neutrino oscillations is intellectually interesting, but it is
not relevant to a successful neutrino-oscillation experiment such as Daya Bay, in that if
oscillations were observed, then there was essentially no decoherence in the experiment. As
such, little knowledge of decoherence can be extracted from the data of a successful neutrino
experiment, and a discussion of decoherence based only on such data will be of limited
significance.1

A better picture of the (non)decoherence effects in a successful neutrino-oscillation ex-
periment should be based on more than just the nominal data of the experiment.

1 The Coherence Length in the Daya Bay Experiment

As reviewed in the Appendix, standard analysis of neutrino oscillations2 leads to the in-
troduction of the concepts of the oscillation length Losc and the coherence length Lcoh in
context of two neutrinos with mass eigenstates m1 and m2 that are created in a flavor state
of definite momentum p� mic, where c is the speed of light in vacuum,

Losc =
4Eh̄

Δm2
12c

3
≈ 4Eh̄c

|m2
1 −m2

2| c4
, Δm2

12 =

(
m2

1

E1
− m2

2

E2

)
E ≈ m2

1 −m2
2 , (1)

where E = (E1 + E2)/2 is the average neutrino energy. The period of the oscillation for
propagation of the neutrinos in the x-direction is λx = πLosc for given energy E. Similarly,
the period of the oscillation in the neutrino-energy spectrum at fixed distance x � λx is
approximately,

λE ≈ πLoscE

x
=

E

Nosc

(
Nosc ≡ x

λx
� 1

)
(2)

where Nosc � 1 is the number of the oscillations observable in the energy spectrum.
The coherence length is the distance after which the wavepackets for neutrinos of types

1 and 2 of the same momentum, but different energies, cease to overlap,

Lcoh(E) =
Losc(E)√
2πσrel(E)

, (3)

1These comments were inspired in part by the Daya Bay internal note [1], which discussed decoherence
using only the data from the neutrino detectors.

2There are two versions of the “standard” neutrino-oscillation analyses based on the approximation of
plane-wave states, which violate energy-momentum conservation when neutrinos oscillate. Some people
assume that the oscillating neutrino has a definite energy, but not a definite momentum (perhaps starting
with [2]; in this approach energy, but not momentum, is conserved in neutrino oscillations. Other people
assume that a neutrino has a definite momentum but not energy (perhaps starting with [3]; in this approach
momentum, but not energy, is conserved in neutrino oscillations. The analysis reviewed here follows the
latter approach.
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where σrel = σE/E, and σE is the relevant rms energy spread.
While it might seem natural that σrel is determined by “intrinsic” effects related to the

source, or to the source-detector distance D, in experiments on reactor neutrinos σrel is
almost entirely determined by the detector energy resolution,3

σrel ≈ σEdet

E
(reactor-neutrino experiment). (4)

A consequence of this is that if the detector resolution is sufficient to resolve oscillations
in the neutrino energy spectrum, then the coherence length is automatically longer than the
source-detector distance, and there will be little/no decoherence in the data.

If we approximate σEdet
/E by,

σrel ≈ σEdet

E
≈ σEprompt

Eprompt
≈ 0.08√

Eprompt

, (5)

where the value 0.08 holds for the Daya Bay experiment, then we arrive at a prediction of the
coherence length. For example, at E = 4 MeV, the peak energy of the reactor antineutrino
spectrum, for which Eprompt ≈ 3 MeV, the detector energy resolution is,

σrel =
σEprompt

Eprompt
≈ 0.08√

3
= 0.046 (Daya Bay detector resolution, E = 4 MeV). (6)

At neutrino energy E = 4 MeV, Losc ≈ 2 km ≈ D for oscillations related to neutrino-mixing
angle θ13, where D is the distance from the reactors to the Daya Bay Far Detector. Then,
eq. (3) leads to the prediction that for a spectral analysis of the neutrino oscillations,

Lcoh ≈ Losc

0.046
√

2π
≈ 5Losc ≈ 5D ≈ 10 km (Daya Bay, E = 4 MeV). (7)

That is, decoherence is unimportant in the spectral analysis [7] of the Daya Bay experi-
ment.4

1.1 Decoherence When the Neutrino Energy is Not Used in the

Analysis

To illustrate further the notion of “decoherence”, we consider the relative rate of electron
antineutrinos that could be detected as a function of distance from a nuclear reactor, if the
neutrino energy were not measured (or knowledge of the neutrino energy not used in the
analysis).5

3Strictly, 1/σ2
E = 1/σ2

Esource
+ 1/σ2

Edet
, as perhaps first discussed in eq. (30) of [4]. See also eq. (53) of

[5] and eq. (15) of [6]. Further details are given in Appendix 2.1.1
4If the Far Detector of the Daya Bay experiment were moved to a larger distance D = NLosc from the

nuclear reactors, the neutrino energy spectrum would show N oscillations, but for N >∼ 5 these oscillations
would not be resolved due to insufficient detector energy resolution. In the latter case, we would say that
the neutrino oscillations have decohered.

See Fig. 3 of [7] for evidence of roughly one oscillation in the energy spectrum of the Daya Bay Far
Detector.

5The Daya Bay analyses reported in [8, 9] are not of this type, but use the observed neutrino energy in
a fit of the data to a model of the oscillating-neutrino interaction rate vs. distance.
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Then, as the energy of the detected neutrinos, roughly 2 < E < 8 MeV, varies by
a factor of ≈ 4, the oscillation length of these neutrinos varies by a factor of 4, and the
oscillations become “smeared out” with distance from the reactor. At large distances,
oscillations cannot be observed vs. distance, and the survival probability is constant at
P (L) ≈ 1 − sin2(2θ12)

〈
sin2(Δm2

12L/4E)
〉
≈ 1 − 0.5 sin2(2θ12) ≈ 0.6 for oscillations where

sin2(2θ12) ≈ 0.8, as in [10] (KamLAND), from which the left figure below is taken.6

On the other hand, the reconstructed neutrino energy E can be used to plot the data vs.
L/E, as in the right figure above (from [16]), in which can evidence for neutrino oscillations
is more clearly seen.

To illustrate this effect for the Daya Bay experiment, where the relevant neutrino-mixing
angle is θ13, with sin2(2θ13) ≈ 0.09, we recall the left figure below (from [8]), in which the
neutrino energy is not used in making the plot, and the right figure below (from [9]), in which
the energy is used. Again, better evidence for oscillations is obtained when the measured
neutrino energy (with its uncertainty due to the detector energy resolution) is used.

6Discussion of decoherence in the KamLAND data is given in [11].
See also [12], where the damping of the oscillations to 1 − 0.5 sin2(2θ12) is called an effect of quantum

decoherence.
Discussion of decoherence in data from atmospheric and astrophysical neutrinos is given, for example, in

[13, 14, 15].
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We illustrate this point further with a calculation based on parameters for 1−3 neutrino
oscillations, assuming two different energy bands in the analysis shown in the left figure
below.

The red curve is for an analysis that ignores the neutrino energy, such that the neutrino
oscillation is damped/distorted beyond ≈ Losc(〈E〉)/[ΔE/E] (≈ 2 km for this Daya Bay
example)).7 The blue curve in the left figure above is for an analysis that restricts the
neutrino energy to 4.5 < E < 5 MeV. The coherence length in this case is ≈ 15 km, about
6 times longer than for the analysis with 2 < E < 8 MeV, with only slight degradation of
the amplitude of the oscillation at 15 km = Lcoh(4.5 < E < 5).

In these examples, neutrino oscillations occur, but the effect is not observable as an
oscillation at large distances, which loss of information we call “decoherence”.8

The energy range ΔE used in the data analysis can be changed/varied after the data
are collected. This “delayed choice” affects the amount of “decoherence” in the analysis.
However, even if the range of reconstructed energy E is made very narrow in the analysis,
the restricted data sample corresponds to neutrinos of energy range ≈ √

2πσE, where σE

is the detector energy resolution. Hence, the coherence length in a data analysis cannot be
larger than ELosc/

√
2πσE , which could be called the “quantum coherence length”, but it

could be shorter if a choice is made after the data were collected to use ΔE >
√

2πσE . In
the latter case, we could speak of the “classical coherence length” ELosc/ΔE .

The amount of decoherence depends on the range ΔE of energies sampled in the detec-
tor/data analysis, as well as on the source-detector distance. Decoherence is often stated
as an effect of the “environment” on a quantum system, and in the present examples, the
“environment” includes the “empty space” between the source and the detector, as well as
the detector itself.

These examples reinforce that the quantity Losc(〈E〉)/[ΔE/E] should be regarded as

7If there were no “smearing”/decoherence, the first minimum in the red curve in the above left plot
would have value 1 - 0.09 = 0.91 rather than 0.93 (at L ≈ 2.5 km ≈ Losc(〈E〉) ≈ Lcoh). Hence, some effect
of “decoherence” is already observable in the figure at Lcoh ≈ 2.5 km.

8Some people (for example, [17]) consider that the “smearing” of the oscillations due to limited energy
resolution in a neutrino detector is not an effect of “decoherence”, although the “smearing” precludes obser-
vation of the oscillations at large distances. In this view, the “coherence length” is not the length over which
an oscillatory signal can be well observed, but a more abstract concept of less relevance to experimental
measurements.
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the coherence length Lcoh in an experiment where neutrinos within energy range ΔE are
observed.

In sum, the coherence length depends on the detector/data analysis, as well
as the neutrino-production process.

2 Limits on the “Intrinsic” Value of σrel

While the detector resolution largely determines the value of σrel in a reactor neutrino exper-
iment, it may be interesting to discuss what can be said about the “intrinsic” contribution
to this quantity.

2.1 Limits Based on Knowledge of the Source

Lower limits on the “intrinsic” value of σrel can be deduced from properties of the nuclear
reactor.

For example, the typical lifetime of the beta decay that produced a reactor antineutrino
is (I think) τ ≈ 10 s. Then cτ ≈ 3 × 104 km, such that by the uncertainty principle,

σE
>∼
h̄

τ
=
h̄c

cτ
≈ 7 × 10−21 MeV, (8)

and for neutrino energy of 4 MeV,

σrel
>∼

h̄c

cτE
≈ 2 × 10−21 (beta-decay lifetime, E = 4 MeV). (9)

This is, of course, a very weak limit.
A much stronger limit is based on the knowledge that the nucleus whose decay produced

the antineutrino was localized roughly by the size of an atom, say σx ≈ 2 × 10−10 m =
2 × 10−13 km. Then,

σE ≈ c σp
>∼
h̄c

σx
≈ 10−3 MeV, (10)

and for neutrino energy of 4 MeV,9

σrel
>∼

h̄c

σxE
≈ 2.5 × 10−4 (source-atom size, E = 4 MeV). (11)

2.2 Limits Based on the Source-Detector Distance

Limits on the “intrinsic” value of σrel can easily be calculated from the source-detector
distance D, whose maximum value is ≈ 2 km in the Daya Bay experiment.

9The limit (11) is deduced in sec. 2.1.6 of [17], but is not found in [1] since this limit is not based on the
Daya Bay neutrino data.
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A lower limit comes from the fact that the neutrino exists only for time Δt ≈ D/c,
noting that since the neutrino energy is much larger than its mass, the neutrino velocity is
essentially the speed of light c. Then, by the uncertainty principle,

σE
>∼

h̄

Δt
≈ h̄c

cΔt
=
h̄c

D
≈ 2 × 10−16 MeV-km

2 km
= 10−16 MeV. (12)

Hence, for the typical reactor-neutrino energy E = 4 MeV, we have that,

σrel =
σE

E
>

10−16 MeV

4 MeV
= 2.5 × 10−17. (13)

On the other hand, the fact that oscillations are observed in the Daya Bay experiment
implies that Lcoh > D ≈ Losc. Hence, from eq. (6) above we infer that,

σrel =
σE

E
=

Losc

Lcoh

√
2π

>∼
1√
2π

= 0.23. (14)

The paper [1] does not mention these simple calculations, but describes a lengthy proce-
dure whose result is,

2.38 × 10−17 < σrel < 0.232. (15)

Thus, use only of the largest Daya Bay source-detector distance D reproduces the main
result of [1].

Hence, it appears that while the lengthy analysis presented in [1] is technically correct,
it is readily anticipated in a few lines, and in any case it does not find the easily predicted
value that Lcoh ≈ 5Losc ≈ 10 km in a spectral analysis of the Daya Bay experiment for
E = 4 MeV, and that Lcoh ≈ Losc ≈ 2 km for an analysis in which the neutrino energy is
not used.

A Appendix: Two-Neutrino Oscillations

A.1 Standard Analysis

We review the standard concepts and notation of neutrino oscillations supposing that there
are only two types of neutrinos, both with mass.10 Production of these neutrinos in a weak
interaction via aW -boson emphasizes the so-called flavor states, νa and νb, while the neutrino
states with definite mass are ν1 and ν2. These two pairs of states are related by 2×2 unitary
matrix with a single parameter, the mixing angle θ12 [19],11

⎛
⎜⎝ ψa

ψb

⎞
⎟⎠ =

⎛
⎜⎝ cos θ12 sin θ12

− sin θ12 cos θ12

⎞
⎟⎠
⎛
⎜⎝ ψ1

ψ2

⎞
⎟⎠ ,

⎛
⎜⎝ ψ1

ψ2

⎞
⎟⎠ =

⎛
⎜⎝ cos θ12 − sin θ12

sin θ12 cos θ12

⎞
⎟⎠
⎛
⎜⎝ ψa

ψb

⎞
⎟⎠ ,(16)

10This Appendix was extracted from [18].
11The two-neutrino mixing angle θ12 was introduced prior to its relative, the Cabibbo angle [20], that

describes the weak-interaction coupling of the u-quark to the d-s quark system, where u, d and s are flavor
states of the strong interaction, which differ from the flavor states of the weak interaction. The formalism for
the strong-weak three-quark mixing was introduced in [21], and the present notation in terms of quark-mixing
angles first appeared in [22]. The latter notation is also commonly used for three-neutrino mixing.
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which implies the states a and b can transform back and forth between each other.12 The
neutrino flavor states a and b do not have a well defined mass, according to eq. (16), if the
neutrino states 1 and 2 have different masses (as occurs in Nature).13

When a neutrino is produced in a nuclear decay, or in the decay of a meson, it is produced
in a flavor state rather than a mass state, and it typically accompanied by the associated
flavor antilepton. Energy and momentum are conserved in this decay process, but the energy
and momentum of the neutrino are different depending for the different neutrino mass state
components of the neutrino flavor state.

We review the standard formalism for neutrino oscillations (perhaps first given in [26],
and in somewhat more detail in [27]).

The usual procedure is to consider plane-wave states of neutrinos 1 and 2 that have
well defined energies Ei and momenta Pi large compared to their (rest) masses mi, which
wave/particles propagate essentially at the speed c of light in vacuum.14 Then, for propaga-
tion along the x-axis, the momenta Pi are,

c2P 2
i = E2

i −m2
i c

4, Pi ≈ Ei

c

(
1 − m2

i c
4

2E2
i

)
, (17)

and

ψi(x, t) = ψi,0 e
i(Pix−Eit)/h̄ ≈ ψi,0 e

iEi(x/c−t)/h̄e−im2
i c3x/2Eih̄. (18)

A neutrino created in a decay at, say, time t = 0 is not really in a plane-wave state (18),
but rather has a wave packet with a spread of energies ΔE, which implies the time spread
of the wave packet is Δt ≈ h̄/ΔE and a spatial width Δx ≈ h̄c/ΔE. If wave packets of
neutrino mass types 1 and 2 are created together (at the origin and at time t = 0), then these
packets continue to overlap significantly, and interfere, until their centroids are separated by
roughly the pulse width Δx. This occurs at the so-called coherence time tcoh related by,

Δx ≈ h̄c

ΔE
= |v1 − v2| tcoh =

∣∣∣∣∣c
2P1

E1

− c2P2

E2

∣∣∣∣∣ tcoh =

∣∣∣∣∣m
2
1c

4

2E2
1

− m2
2c

4

2E2
2

∣∣∣∣∣ ctcoh, (19)

12The possibility of such transitions in a two-state system of elementary particles was first noted by Gell-
Mann and Pais in 1955 [23] for the K0-K̄0 system, and first considered for neutrinos by Pontecorvo in 1957
[24]. In meson-antimeson systems such as K0-K̄0, the meson and antimeson have the same mass (assuming
CPT invariance is valid), and can decay to the same final states, such that transitions K0 ↔ K̄0 are possible.
The neutrino oscillations considered here are not between neutrinos and antineutrinos, but between different
flavor states of neutrinos (or of antineutrinos). For discussion of possible ν ↔ ν̄ oscillations, see [2].

13If a neutrino could be produced in either of the mass states 1 or 2, it would remain in that state until
observed (provided it propagates in vacuum; propagation through matter involves interactions that depend
on neutrino flavor which lead to oscillations between neutrino mass states [3, 25]). If there were a method
of observation of mass states, the neutrino would always be observed in the same mass state in which it was
created.

14We work in the lab frame. In contrast, discussion of K0-K̄0 oscillations are typically given in the “rest
frame” of the K, which is not strictly well defined since the eigenstates K0

L and K0
S has different masses.

However, the neutral-Kaon mass difference is very small, ΔmK/mK ≈ 10−14, so little error is incurred by
this procedure. However, for neutrinos it could be that Δmν/mν > 1, so the notion of a single rest frame
for oscillating neutrinos is doubtful.
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where E = (E1 + E2)/2 is the average energy of the two neutrinos. We introduce the
coherence length Lcoh according to (see, for example, [28, 29, 30]),15,16

Lcoh = ctcoh =
h̄c

ΔE
∣∣∣m2

1c4

2E2
1
− m2

2c4

2E2
2

∣∣∣ ≈
2E2h̄c

ΔE |m2
1 −m2

2| c4
. (20)

The usual analysis continues with the approximation (often not stated explicitly) that
the first phase factor in eq. (18) can be ignored, and we write,17

ψi(x, t) ≈ ψi,0 e
−im2

i c3x/2Eih̄, where x ≈ ct. (21)

The exponential phase factor e−im2
i c3x/2Eih̄ is slightly different for mass states 1 and 2, which

leads to an oscillatory interference term in the spatial/time dependence of an initial single-
flavor state.

For a neutrino created at the origin at time t = 0 in a pure flavor state a with ψa,0 = 1,
ψb,0 = 0, the initial mass states are,

ψ1,0 = cos θ12, ψ2,0 = sin θ12, (22)

according to eq. (16), so the evolution of the flavor states is, using eq. (21),

ψa(x) = cos θ12ψ1 + sin θ12ψ2 = cos2 θ12 e
−im2

1c3x/2E1h̄ + sin2 θ12 e
−im2

2c3x/2E2h̄, (23)

ψb(x) = − sin θ12ψ1 + cos θ12ψ2 = − cos θ12 sin θ12

(
e−im2

1c3x/2Eh̄ − e−im2
2c3x/2Eh̄

)
. (24)

The probability that the initial flavor state a is still a after the neutrino has traveled distance
x is,

Pa→a(x,E) = |ψa(x)|2 = cos4 θ12 + sin4 θ12 + 2cos2 θ12 sin2 θ12 cos

[(
m2

1

E1
− m2

2

E2

)
c3x

2h̄

]

= cos4 θ12 + sin4 θ12 + 2cos2 θ12 sin2 θ12

(
1 − 2 sin2 Δm2

12c
3x

4Eh̄

)

= 1 − sin2 2θ12 sin2 Δm2
12c

3x

4Eh̄
= 1 − sin2 2θ12 sin2 x

Losc
, (25)

where the squared mass difference Δm2
12 and oscillation length L are given by,18

Δm2
12 =

(
m2

1

E1

− m2
2

E2

)
E ≈ m2

1 −m2
2, Losc =

4Eh̄

Δm2
12c

3
≈ 4Eh̄c

|m2
1 −m2

2| c4
. (26)

15The neutrino coherence length was perhaps first discussed in [31].
16Calling the length defined by eq. (20) the coherence length is perhaps unfortunate in that the meaning

here is significantly different from the usage in optics, where the optical coherence length is usually taken to
be the spatial width h̄c/ΔE of a wave packet (in vacuum) with energy spread ΔE.

17It is actually more common to write ψi(x, t) ≈ ψi,0 e
−im2

i c4t/2Eih̄ where t = x/c. Writing ψi(x, t) as a
function of x is closer to experimental practice, as emphasized in [29, 30].

18The oscillations of a neutral meson-antimeson system are usually expressed in the (nominal) rest frame
of the meson as cos(|m1 −m2| c2t�/h̄) (see, for example, [32]). In the lab frame the oscillation has, for
E � mc2, the approximate form cos[(|m1 −m2| c2x/h̄c)(mc2/E)] = cos(

∣∣m2
1 −m2

2

∣∣ c4x/2Eh̄c) = 1 −
2 sin2(

∣∣m2
1 −m2

2

∣∣ c4x/4Eh̄c), where m = (m1 +m2)/2 is the average mass of the states 1 and 2 of definite life-
time (sometimes called the “long” and “short” states as in K0

L and K0
S). Again, Losc = 4Eh̄c/

∣∣m2
1 −m2

2

∣∣ c4.
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and again E = (E1 + E2)/2 is the average neutrino energy. The period of the oscillation in
x is λx = πLosc for fixed energy E, and the period of the oscillation in E is approximately,

λE ≈ πLoscE

x
=

E

Nosc

(
Nosc ≡ x

λx

� 1
)

(27)

when the fixed distance x = Noscλx � λx, where Nosc � 1 is the number of the oscillation
being observed.

The probability that the initial flavor state a is has become flavor b after the neutrino
has traveled distance x is,

Pa→b(x,E) = |ψb(x)|2 = 2cos2 θ12 sin2 θ12

{
1 − cos

[(
m2

1

E1
− m2

2

E2

)
c3x

2h̄

]}

= sin2 2θ12 sin2 Δm2
12c

3x

4Eh̄
= sin2 2θ12 sin2 x

Losc
= 1 − Pa→a(x). (28)

Equations (25) and (28) are the standard representation of two-neutrino oscillations for
neutrinos produce in a flavor state.

The coherence length (20) is related to the oscillation length (26) by,

Lcoh ≈ E

ΔE
Losc. (29)

Under the assumption that the relevant energy spectrum is approximately Gaussian with
variance σE , it has become conventional to write,19

Lcoh =
E√

2πσE

Losc. (30)

A.2 Effect of Detector Resolution

Equation (29) indicates that in the extreme case that the neutrino wave packet is maximally
broad, with energy spread ΔE ≈ E as for (anti)neutrinos from the decay of heavy nuclei,
only a few oscillations might be observable. However, this assumes that the neutrino is
detected without any determination of its energy or momentum.

If the neutrino is detected in a manner that determines its energy (or momentum) to
some accuracy σEdet

which is smaller than the energy spread σEsource associated with the
source, the energy spread that appears in eqs. (29)-(30) should be σEdet

rather than the
source-related energy spread as considered above.20

In practice, the relative energy resolution of neutrino detectors is a few percent, which
has no effect on the coherence of oscillations of neutrinos from two-body decays, but will be
the determining factor for the coherence length of neutrinos from three-body decays. That
is, a detector with sensitivity to neutrino energy makes a selection among the full spectrum

19The definition (30) may have first been given in eq. (24) of [6].
20Strictly, 1/σ2

E = 1/σ2
Esource

+1/σ2
Edet

, as perhaps first discussed in eq. (30) of [4]. See also eq. (53) of [5]
and eq. (15) of [6]. Earlier discussion of the role of the detector, as in [33], emphasized its size rather than
its energy resolution.
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of energy of neutrinos incident upon it, which permits observation of oscillations of neutrinos
from a three-body decay at greater distance from the source than would be possible if the
detector merely identified the presence of a neutrino but with no information as to its energy
(or momentum).

In particular, if oscillations are to be observed in the energy spectrum of neutrinos from
a three-body decay at a single distance x from the source (rather than, say, as oscillations
as a function of distance for neutrinos of any energy), the energy resolution of the detector
must be better than 1/4 of a period λE of the oscillation in energy. Then, eq. (27) implies
that E/ΔEdet

>∼ 4Nosc, and the coherence length is Lcoh
>∼ 4NoscLosc = 4x/π for observation

of oscillation number Nosc at distance x = Noscλx = NoscπLosc. That is, the requirement
that the detector resolution be good enough to resolve the energy oscillations insures that
the coherence length for the oscillations is long enough that they can be observed.21

For example, in the context of a three-neutrino scenario, where L12 ≈ 30L13, it is possible
to resolve the so-called mass hierarchy by observation of rapid 1-3 oscillations with Nosc ≈ 30
at the peak of the first (slower) 1-2 oscillation [34]. The relative detector energy resolution
for neutrinos needs to be better than 1/120 to resolve the oscillations, whereas to avoid any
effects of decoherence, the energy resolution should be somewhat better than this.

While only a single oscillation has been observed in neutrino experiments (and in the
K0-K̄0 system) to date, oscillations over nine periods have recently been observed in the B0

s -
B̄0

s system [35], which indicates that EBB̄/ΔE >∼ 10 for B0
s production at a hadron collider.

Since heavy quark states such as the B0
s are produced in pp collisions via “fusion” of gluons

whose initial energies are not well defined, but the relative detector energy resolution for the
B0

s is less that 10%, the experimental results [35] are evidence that ΔE ≈ ΔEdet in this case,
where good detector resolution has extended the coherence length of the meson-antimeson
oscillations.

A.2.1 Further Details

When a neutrino (or antineutrino) of flavor a is produced in the decay,

A→ B + νa, (31)

in the rest frame of particle A of mass mA, and the neutrino flavor state νa is related to
neutrino mass eigenstates ν1 and ν2 of masses m1 and m2 by,

|νa〉 = cos θ12|ν1〉 + sin θ12|ν2〉, (32)

the final state wavefunction in entangled, and can be written as,

|B, νa〉 = cos θ12|B1〉|ν1〉 + sin θ12|B2〉|ν2〉. (33)

Energy and momentum conservation are that,

mA = EB1 + Eν1 = EB2 + Eν2, 0 = PB1 + Pν1 = PB2 + Pν2, (34)

21If the energy resolution is barely sufficient to resolve the oscillations, the coherence length is only slightly
larger than the source-detector distance, and there may be some loss of amplitude of the oscillations.
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where, of course, the energy and momentum for a state of mass m are related by E2 =
m2c4 + P 2c2.

We are particularly interested in the case of a three-body β-decay, where B is a two-
particle system, and the neutrino energies form a continuum over a range of several MeV.

In general, the neutrino is detected with an energy resolution smaller than the width of
its β-decay spectrum, so that for detected neutrinos, we can speak of σE (≈ 0.08

√
E for

the Daya Bay experiment) as the detector energy resolution rather than as the width of the
β-decay spectrum.22

The usual argument23 is that the process of detection of a neutrino leaves it with a definite
energy E, even if this value is not well known due to the uncertainty in the measurement of
that energy, which is reported as Ē. Then, the observed behavior of detected neutrinos is to
be obtained by weighting their survival probability by an approximately Gaussian detector-
resolution function.

From eq. (25), the probability that a neutrino of energy E and flavor a is still of that
flavor after traveling distance x is,

Pa→a(x,E) = 1 − sin2 2θ12 sin2 Δm2
12c

3x

4Eh̄
. (35)

The probability that a neutrino is detected as having energy Ē by a detector with rms energy
resolution σE(Ē) is,

Pa→a(x, Ē) ∝
∫
dE e−(E−Ē)/2σ2

EPa→a(x,E). (36)

The Gaussian factor in eq. (35) can be rewritten as,24

e−(E−Ē)2/2σ2
E = e−x2E2Ē2(E−Ē)2/2σ2

EE2Ē2x2

= e−E2Ē2(x/E−x/Ē)2/2σ2
Ex2 ≈ e−Ē4(x/E−x/Ē)2/2σ2

Ex2

≡ e−Ē2(w−w̄)2/2σ2
Ew̄2

, (37)

where w = x/E and w̄ = x/Ē. The probability (36) can now be represented in the (normal-
ized) form,

Pa→a(w̄) =
∫
dw

e−Ē2(w−w̄)2/2σ2
Ew̄2

√
2πσEw̄/Ē

(
1 − sin2 2θ12 sin2 Δm2

12c
3w

4h̄

)

= 1 − 1

2
sin2 2θ12

∫
dw

e−Ē2(w−w̄)2/2σ2
Ew̄2

√
2πσEw̄/Ē

(
1 − cos

Δm2
12c

3w

2h̄

)

= 1 − 1

2
sin2 2θ12

(
1 −

∫
dw′ e

−Ē2w′2/2σ2
Ew̄2

√
2πσEw̄/Ē

cos
Δm2

12c
3(w′ + w̄)

2h̄

)

= 1 − 1

2
sin2 2θ12

(
1 − cos

Δm2
12c

3w̄

2h̄
e−σ2

EΔm4
12c6w̄2/8Ē2h̄2

)

= 1 − 1

2
sin2 2θ12

(
1 − cos

2x

Losc(Ē)
e−2(σ2

E/Ē)2x2/L2
osc(Ē)

)
, (38)

22In the unrealistic case of extremely fine detector resolution σE would not go to zero, but to a small
value governed by other considerations, such as the size of the atom that contained the state A. That is,
σ2

E = σ2
Edet

+ σ2
Eother

.
23See, for example, [36].
24This type of transformation was used in [5], on which this section is based.
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using Gradshteyn and Ryzhik 3.896.4 [37]. For very fine detector energy resolution, σE/Ē �
1, we recover the form (25). For coarse energy resolution the survival probability does
not oscillate, but simply has the value 1 − (1/2) sin2 2θ12 independent of x, and we say
that the oscillations have decohered, as illustrated in the top left figures on pp. 3-4. The
damping/coherence length in the last form of eq. (38) is,

Lcoh(Ē) =
Losc(Ē)√
2 σE/Ē

. (39)

A.3 Effect of Source Size

If the neutrino source is large compared to an oscillation length the evidence for neutrino
oscillations in a detector will be “washed out”. This is not strictly an effect of decoher-
ence, in that neutrinos produced in different primary interactions do not interfere with one
another.25,26

This effect is important in studies of oscillations of reactor neutrinos, where the distances
between the detector and multiple reactors must be not too different. Also, since supernova
neutrinos have energies and oscillations lengths similar to those for reactor neutrinos, but
the size of supernovas is large compared to the kilometer scale of the oscillation lengths,
oscillations of supernova neutrinos cannot be observed.27
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