
Reconstruction of Energy and Position
in the Antineutrino Detectors

Kirk T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(Version 11, July 25, 2011)

Abstract

A χ2 algorithm is proposed for simultaneous reconstruction of energy and
position of a localized event in the antineutrino detectors.

We consider a localized deposition of energy E at a position x = (x, y, z) inside one
of the antineutrino detectors. Each of the 192 photomultiplier tubes (PMTs) detects ni

photoelectrons at a representative position (xi, yi, zi), along the axis of the PMT, some 2 cm
from its front face [1].

We suppose that the number of detected photoelectrons is related to the energy and
position of the source by,

ni =
kiNAE

4πR2
i

, where R2
i = (x − xi)

2 + (y − yi)
2 + (z − zi)

2, (1)

where ki is a (possibly time-dependent) coefficient that reflects quantum efficiency of PMT i,
N is the number of scintillation photons per unit of deposited energy, A = πr2

1 is the area of
the PMT photocathode, r1 = 9.5 cm, and the geometric acceptance of photons by a PMT is
assumed to fall off with the square of the distance to the source. In the first approximation,
all ki are the same, about 0.2.

We form the χ2 for the observed data {ni} and the parameters x, y, z and E that are to
be determined,

χ2 =
192∑
i=1

(
ni − kiNAE

4πR2
i

)2

ni
, (2)
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where the standard error for the observation of ni photoelectrons is taken to be
√

ni, and
terms for which ni = 0 are omitted from the summation.

The best-fit parameters minimize the χ2, which could be performed by a program such as
MINUIT. For a less compute-intensive approach we might consider an iterative procedure,
first noting that minimizing the χ2 implies that,

0 = − 2π

NA

∂χ2

∂E
=
∑

i

ki

R2
i

(
ni − kiNAE

4πR2
i

)
ni

, (3)

E =
4π

NA

∑
i

ki

R2
i∑

i
k2

i

niR
4
i

, (4)

0 =
π

NAE

∂χ2

∂x
=
∑

i

ki(x−xi)
R4

i

(
ni − kiNAE

4πR2
i

)
ni

, (5)

x =
4π

NA

∑
i

kixi

R4
i

(
1 − kiNAE

4πniR2
i

)
∑

i
ki

R4
i

(
1 − kiNAE

4πniR
2
i

) , (6)

etc. Since Ri is a function of x, eqs. (4) and (6) are not closed-form solutions. However, we
could start with an initial hypothesis as to (x, y, z), perhaps at the center of the detector,
or based on a quick estimate such as x =

∑
i nixi/

∑
i ni, and iterate for E and x. Clearly,

Monte Carlo studies are be needed to validate this approach.
This model can be augmented in various ways.
If we suppose that the photoelectrons are attenuated with distance Ri according to e−Ri/λ,

for a known attenuation length λ, the χ2 would be modified to read,

χ2 =
192∑
i=1

(
ni − kiNAEe−Ri/λ

4πR2
i

)2

ni

. (7)

Reflectors at height z+ and z− with reflectivity ε could be accounted for by introducing,

R2
i± = (x − xi)

2 + (y − yi)
2 + (2z± − z − zi)

2, (8)

and,

χ2 =
192∑
i=1

[
ni − kiE

(
e−Ri/λ

R2
i

+ ε e−Ri+/λ

R2
i+

+ εe−Ri−/λ

R2
i−

)]2
ni

. (9)

The possibility of multiple reflections could be included by defining additional distances
Ri+−, Ri−+, Ri+−+, etc.

The model (1) assumes that the solid angle of the photocathode depends only on the
distance Ri and not on the direction. However, for a give Ri the solid angle actually varies
by a (calculable) factor of ≈ 5 with direction, being smallest when the light travels nearly
vertically in the detector [1]. Denoting this “obliquity factor” by α(cos θi), and noting that
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distance Ri is not necessarily large compared to the radius r1 = 9.5 cm of the edge of the
photocathode, eq. (1) could be modified as [1],

ni =
kiNE e−Ri/λ

2

⎛
⎝1 − Ri√

R2
i + αr2

1

⎞
⎠ + · · · . (10)

As an example, consider the case that we include single reflections and an obliquity factor.
Then,

ni =
kiNE

2

3∑
j=1

εj e−Rij/λ

⎛
⎝1 − Rij√

R2
ij + αijr2

1

⎞
⎠ , (11)

where the reflectivity εj is 1 for j = 1 and less for j = 2 and 3 which correspond to light
having a single bounce at the top or bottom reflectors, Ri1 = Ri, Ri2 = Ri+, Ri3 = Ri−,
αij = α(cos θij),

cos θij =
eix(x − xi) + eiy(y − yi)

Rij
, (12)

with (eix, eiy, 0) being a unit vector along the axis of PMT i. Following [1], the obliquity
factor can be approximated as,

α(cos θ) =
3∑

m=0

am cosm θ, (13)

where,
a0 = 0, a1 = 1, a2 = 0, a3 = 0 (cos θ > 0.69), (14)

a0 = 0.19, a1 = 0, a2 = 1.71, a3 = −0.95 (cos θ < 0.69). (15)

A cruder approximation is simply α = cos θ, as would hold if the face of the PMT were
flat.

Minimizing the χ2 based on eq. (11) leads to,

0 = − 1

N

∂χ2

∂E
(16)

=
∑

i

ki

3∑
j=1

εj e−Rij/λ

⎛
⎝1 − Rij√

R2
ij + αijr2

1

⎞
⎠
⎡
⎣1 − kiNE

2ni

3∑
k=1

εk e−Rik/λ

⎛
⎝1 − Rik√

R2
ik + αikr2

1

⎞
⎠
⎤
⎦ ,

E =

2
N

∑
i ki

∑3
j=1 εj e−Rij/λ

(
1 − Rij√

R2
ij+αijr2

1

)
∑

i
k2

i

ni

[∑3
j=1 εj e−Rij/λ

(
1 − Rij√

R2
ij+αijr2

1

)]2 , (17)

0 =
1

NE

∂χ2

∂x
=

∑
i

ki

3∑
j=1

εje
−Rij/λ

⎧⎨
⎩(x − xi)

⎡
⎣ 1

λRij

⎛
⎝1 − Rij√

R2
ij + αijr2

1

⎞
⎠ +

αijr
2
1

Rij(R2
ij + αijr2

1)
3/2

⎤
⎦

+
α′

ijr
2
1

2(R2
ij + αijr

2
1)

3/2

(
cos θij(x − xi)

Rij

− eix

)}
⎡
⎣1 − kiNE

2ni

3∑
k=1

εk e−Rik/λ

⎛
⎝1 − Rik√

R2
ik + αikr2

1

⎞
⎠
⎤
⎦ , (18)
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where α′ = dα/d cos θ =
∑3

m=1 m am cosm−1 θ. Hence, we can write,

x =
A

B
, (19)

where,

A =
∑

i

ki

3∑
j=1

εje
−Rij/λ

⎧⎨
⎩xi

⎡
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λRij

⎛
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R2
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1

⎞
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2
1

Rij(R2
ij + αijr2

1)
3/2

⎤
⎦
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′
ijr

2
1

2(R2
ij + αijr2

1)
3/2

}⎡⎣1 − kiNE

2ni

3∑
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εk e−Rik/λ

⎛
⎝1 − Rik√

R2
ik + αikr2

1

⎞
⎠
⎤
⎦ , (20)

and,

B =
∑

i

ki

3∑
j=1

εje
−Rij/λ

⎡
⎣ 1

λRij

⎛
⎝1 − Rij√

R2
ij + αijr2

1

⎞
⎠ +

[αij + (α′
ij/2) cos θij ]r

2
1

Rij(R
2
ij + αijr

2
1)

3/2

⎤
⎦

⎡
⎣1 − kiNE

2ni

3∑
k=1

εk e−Rik/λ

⎛
⎝1 − Rik√

R2
ik + αikr2

1

⎞
⎠
⎤
⎦ . (21)

Similar expressions hold for y, but the z-dependence in Rij and cos θij leads to the
substitutions eix → 0, and xi → 2z± − zi (rather than xi → zi) for j, k = 2, 3 in the
expressions for A and B.

For a maximum-likelihood approach to this issue, see [2]. An alternative to the analytic
approach considered here is to use a Monte Carlo simulation of the detector, and to fit
the results for the number of photoelectrons to some form ni = Ef(x, y, z, xi, yi, zi) whose
derivatives with respect to x, y and z are reasonably simple. Then, an iterative χ2 method
could be constructed similar to that given in this note. A step in this direction has been
made in [3].

Comments:
I wrote a simplified Monte Carlo event generator that assumes the faces of the PMTs

are flat, and that there are no reflections. Using the actual E and x for the (point) source
of scintillation, the reconstruction of energy E according to eq. (17) is reasonable, but the
reconstruction of source position x according to eqs. (19)-(21) is poor.

I note that the form of eq. (20) is peculiar in that it weights PMT coordinate xi according
to [ni(meas) − ni(pred)]/ni(meas), which gives more significance to PMTs in which the
observed signal differs more from the expectation. This may be a hint that the iterative
algorithm considered here has poor convergence. Instead, it may be more appropriate to find
the best-fit E and x by numerical minimization of the χ2 (or by numerical maximization of
the closely related likelihood function).
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