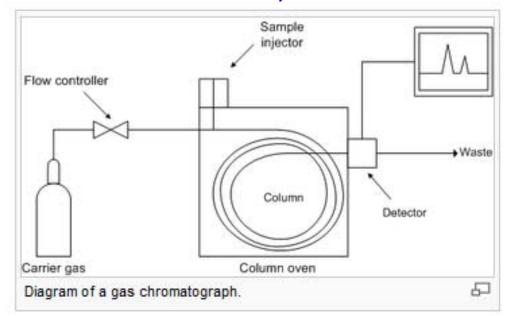
Monitoring the RPC Gas Mixture with a Gas Chromatograph

C. Lu Princeton University

Basic Working Principle of Gas Chromatography

A gas chromatograph is used for identifying constituents in a gas mixture.


It contains a narrow tube (*column*), through which different constituents (gases) of a sample gas mixture flow at different rates depending on their various chemical and physical properties.

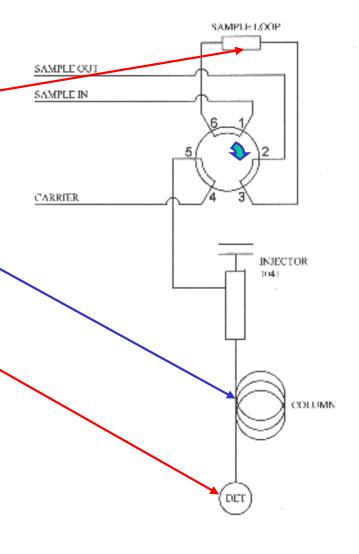
The differential flow rate is increased by specific column filling, called the *stationary* phase.

The gas mixture to be tested is injected at time t = 0 into the carrier gas stream, typically helium.

As the gases exit the end of the column, they are detected and identified by their exit

time (retention time).

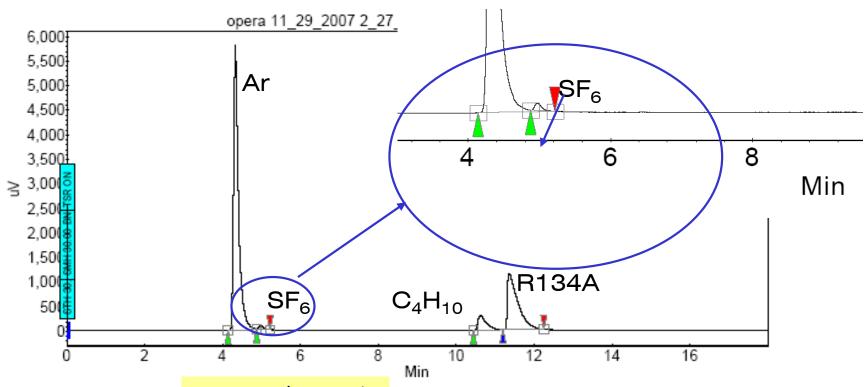
Varian 3900GC Gas Chromatograph


The GC system used in Princeton is Varian 3900GC, which is a single-channel all-electronic gas chromatograph, equipped with a 1041 on-column injector.

The sampling loop on its sample valve has 5μ L volume.

It uses a fused silica capillary column 30m x 0.53mm ID, coating Silicaplot.

At the end of the column is a TCD (Thermal Conductivity Detector).


(Xiaolan Luo of IHEP provided a lot of useful information on running their HP GC system, which was very helpful for setting up 3900GC system at Princeton.)

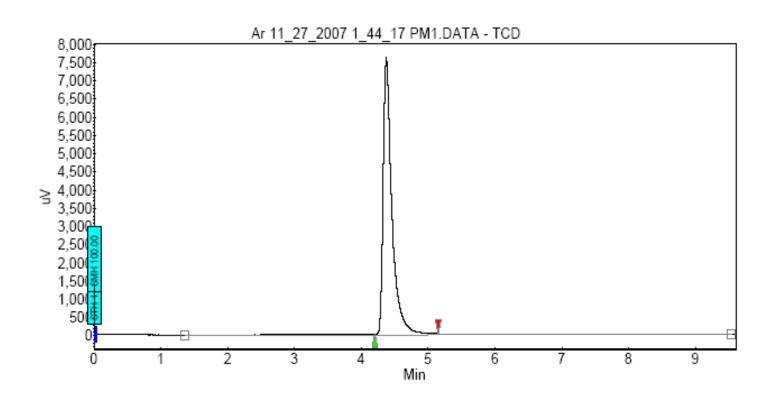
Analysis of the OPERA Gas Mixture at Princeton

Area under peak

Peak results:

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[uV]	[uV.Min]	[%]
1	UNKNOWN	4.32	65.95	5786.4	848.1	65.946
2	UNKNOWN	4.97	0.71	86.3	9.1	0.709
3	UNKNOWN	10.62	5.89	293.3	75.8	5.893
4	UNKNOWN	11.36	27.45	1148.0	353.0	27.452
Total			100.00	7314.0	1286.0	100.000

Four peaks can be clearly seen in the analysis of the OPERA gas mixture: Ar, SF6, C4H10 and R134A. The relation between the area under a peak and gas concentration is obtained by calibration with pure gases.


Argon Calibration Chromatogram

Chromatogram : Ar 11_27_2007 1_44_17 PM1_channel1

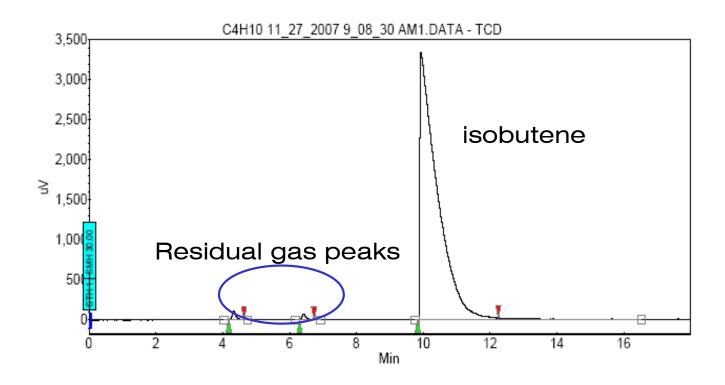
 System:
 System_1
 Acquired:
 11/27/2007 1:46:09 PM

 Method:
 test-11192007B
 Processed:
 11/27/2007 1:57:22 PM

 User:
 Administrator
 Printed:
 12/8/2007 11:28:54 AM

Peak results:

Index	Name	Time [Min]	Quantity [% Area]		Area [uV.Min]	Area % [%]
1	UNKNOWN	4.37	100.00	7609.8	1163.3	100.000
Total			100.00	7609.8	1163.3	100.000



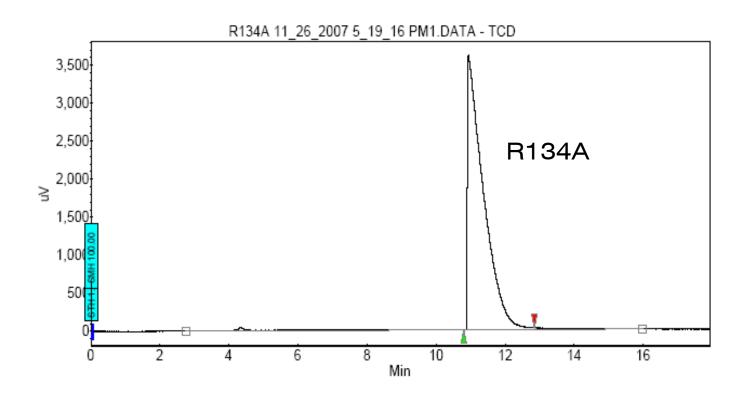
C4H10 Calibration Chromatogram

Chromatogram: C4H10 11_27_2007 9_08_30 AM1_channel1

System: System_1 Method: test-11192007B User: Administrator Acquired: 11/27/2007 9:18:14 AM Processed: 11/27/2007 10:38:20 AM Printed: 12/8/2007 11:39:15 AM

Peak results:

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[uV]	[uV.Min]	[%]
1	UNKNOWN	4.32	0.77	109.9	15.6	0.773
2	UNKNOWN	6.42	0.49	73.6	9.9	0.490
3	UNKNOWN	9.93	98.74	3337.7	1988.0	98.737
Total			100.00	3521.2	2013.4	100.000



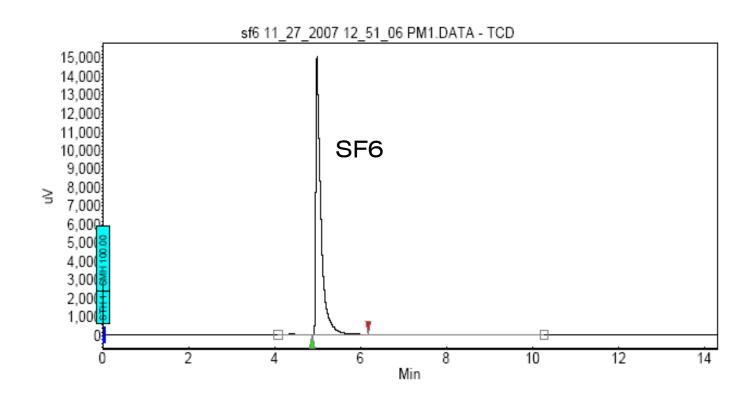
R134A Calibration Chromatogram

Chromatogram: R134A 11_26_2007 5_19_16 PM1_channel1

System : System_1 Method : test-11192007B User : Administrator Acquired: 11/26/2007 5:20:32 PM Processed: 11/26/2007 5:42:45 PM Printed: 12/8/2007 11:28:03 AM

Peak results:

Index			Quantity [% Area]		Area [uV.Min]	Area % [%]	
1	UNKNOWN	10.94	100.00	3609.6	1927.5	100.000	
Total			100.00	3609.6	1927.5	100.000	

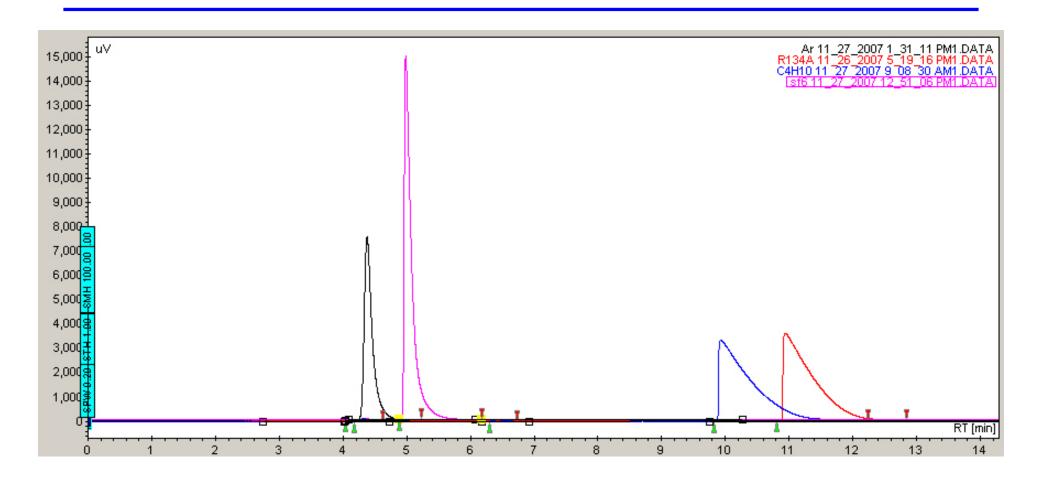

SF6 Calibration Chromatogram

Chromatogram: sf6 11_27_2007 12_51_06 PM1_channel1

 System:
 System_1
 Acquired:
 11/27/2007 12:52:27 PM

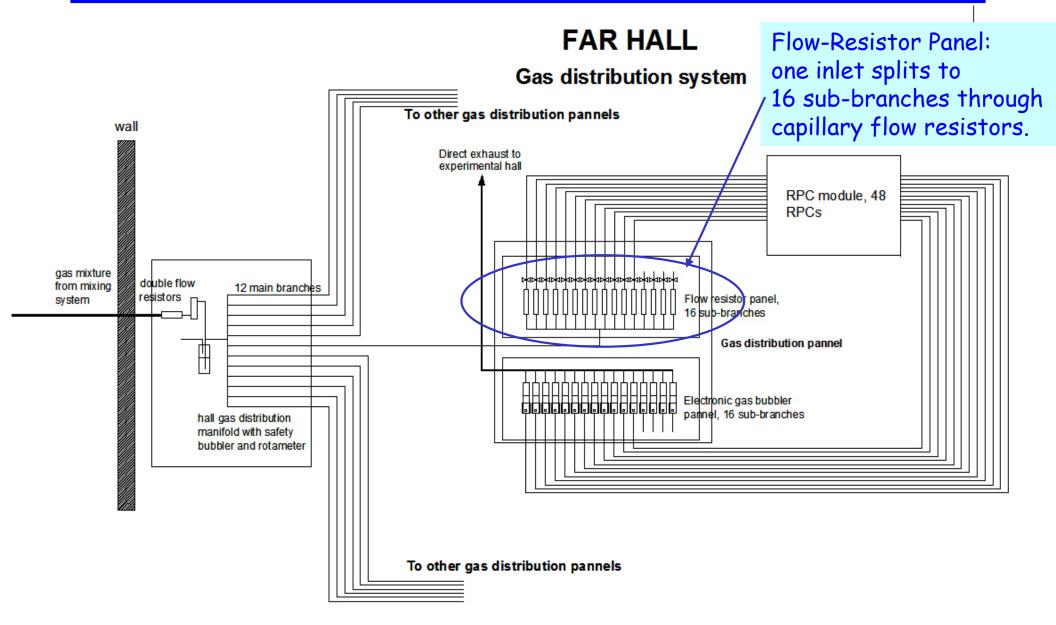
 Method:
 test-11192007B
 Processed:
 11/27/2007 129:10 PM

 User:
 Administrator
 Printed:
 12/8/2007 11:25:54 AM


Peak results:

Index	Name	Time [Min]	Quantity [% Area]	Height [uV]	Area [uV.Min]	Area % [%]
1	UNKNOWN	4.99	100.00	15005.1	2048.9	
Total			100.00	15005.1	2048.9	100.000

Four Calibration Peaks



The areas under four peaks are different, so use their ratios as the calibration constants.

Daya Bay RPC Gas Distribution Panel

Gas Flow-Resistor Study

Does the capillary gas flow-resistor affect the gas-mixing ratio?

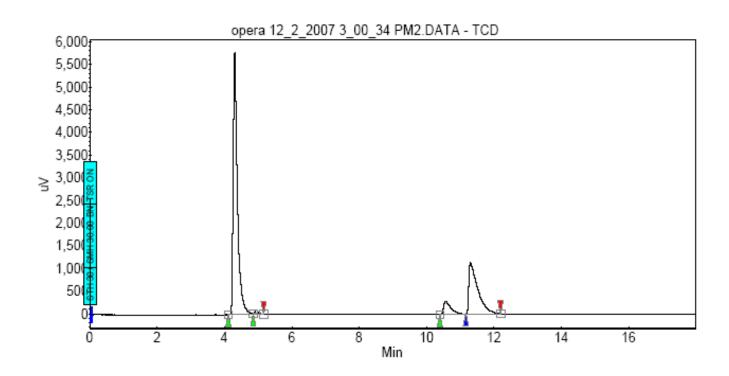
We have studied the gas mixing ratio with GC for 1, 2 and 7 flow-resistor branches to see if the mixing ratio is stable.

File	Ar	R134A	C4H10	SF6	Sum	comment
opera 11_29_2007 1_00_39 PM2	872.1	331.4	78	7.8		1 branch
mixing ratio (opera)	77.70	17.82	4.07	0.42		
opera 11_29_2007 1_25_40 PM2	858.9	353.5	77.8	8.4		2 branches
mixing ratio (opera)	76.50	19.00	4.05	0.45		
opera 11_29_2007 2_27_52 PM2	848.1	353	75.8	9.1		7 branches
mixing ratio (opera)	76.26	19.16	4.10	0.49		

Slight differences were observed between one branch and 2 or 7 branches.

This could be due to uncertainties in the test procedure.

More test will be done before drawing any conclusion.



Gas Mix at the RPC Gas Outlet

Chromatogram: opera 12_2_2007 3_00_34 PM2_channel1

System : System_1 Method : analyze-11302007A User : Administrator Acquired : 12/2/2007 3:01:40 PM Processed : 12/2/2007 3:33:54 PM Printed : 12/8/2007 12:34:10 PM

Peak results:

Index	Name	Name Time		Height	Area	Area %
		[Min]	[% Area]	[uV]	[uV.Min]	[%]
1	UNKNOWN	4.30	66.07	5763.7	837.0	66.070
2	UNKNOWN	4.94	0.63	77.9	8.0	0.635
3	UNKNOWN	10.57	5.76	289.5	73.0	5.762
4	UNKNOWN	11.30	27.53	1136.7	348.8	27.534
Total			100.00	7267.7	1266.9	100.000

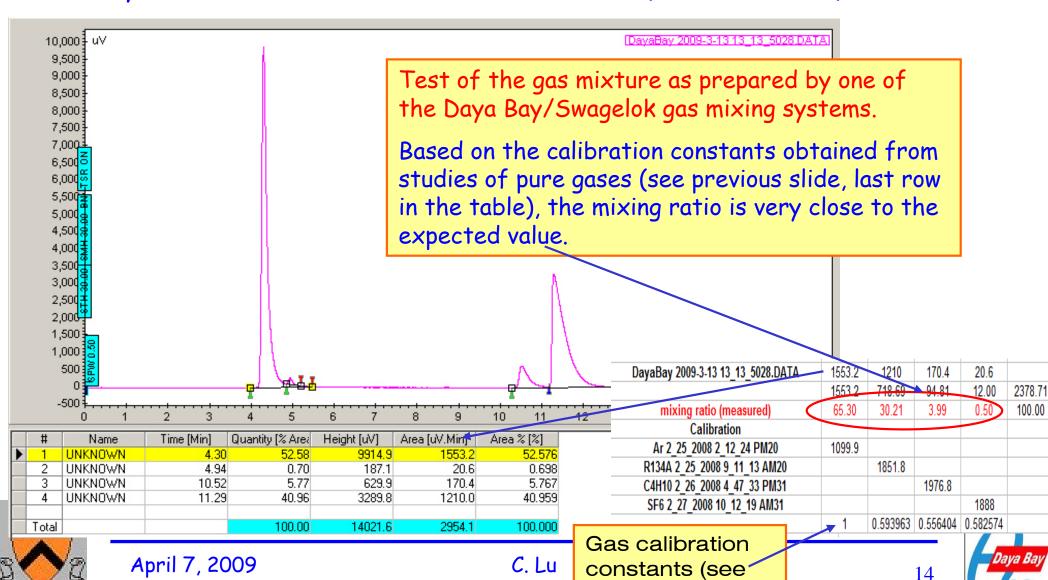
Gas at the Outlet of RPCs, II

File	Ar	R134A	C4H10	SF6	Sum	comment
opera 12_2_2007 3_00_34 PM2	837	348.8	73	8		7 branches
	837	210.5105	42.71675	4.778885	1095.006	at outlet of 2
mixing ratio (opera)	76.44	19.22	3.90	0.44		
Calibration						
Ar 11_27_2007 1_44_17 PM1	1163.3					
R134A 11_26_2007 5_19_16 PM1		1927.5				
C4H10 11_27_2007 9_52_16 AM1			1988			
SF6 11_27_2007 12_51_06 PM1				1947.4		
	1	0.603528	0.585161	0.597361		

No additional peaks are visible.

The mixing ratio is close to that of the original gas mixture.

HF production is not expected to be detectable with our GC system.


A GC-MS (Mass Spectrometer) system, might be able to see very low levels of HF in the outlet gas mixture.

Daya Bay RPC Gas Mixture

Due to gas safety considerations, Daya Bay RPC has chosen a different, non-flammable gas mixture has been chosen as the Daya Bay RPC baseline: Ar/R134A/Isobutane/SF6(65.5/30/4/0.5).

previous slide)

Quotes from Varian and Perkin Elmer

Varian's quote for 2 sets of 430-GC (newer version of 3900-GC) and one software license (can be used for 2 or 3 systems) is \$23,389.

A third 430-GC is adding additional \$10,320.

Total cost for 3 systems will be \$33,709.

Perkin Elmer's quote for 3 sets of ARNEL-CLARUS 500 GC is \$51,105.

The 3900-GC we purchased two years ago was \$15,770. Varian is offering us a deep discount!

Conclusion

- The Varian 3900GC system studied here is a reliable, high-quality tool to check Daya Bay RPC gas system, including the concentration of isobutane.
- Tests of gas mixing ratio before and after the gas flow-resistor panel show no unexpected differences.
- The gas mixture at the exit of two working 2 x 1 m² IHEP RPCs (OPERA gas mixture at 6000V) shows no unexpected extra peaks or difference between the input and output mixing ratio.
- The GC also verified that Daya Bay RPC gas as mixed by one of the Daya Bay/Swagelok mixing panels has the desired mixing ratio to better than 0.5% in all 4 component gases.
- Varian is offering a deep discount for 2 or 3 of their new version 430-GC systems.

