
Proposal for Making a Prototype of the Daya Bay RPC Gas System

Changguo Lu, Princeton University (2/7/2007)

The Daya Bay experiment needs three RPC gas stations for one far site and two near sites muon systems. These three gas stations are identical. The first prototype proposed here can be used at any one of three sites. This prototype also can be used for our R&D work for the following several years, therefore we can test its stability and explore its long term operation behavior.

We have investigated the gas system used at BaBar RPC/LST system and Belle RPC system. Their long term running experience provides us a lot of valuable and practical advices, which are certainly will be incorporated into our design consideration.

1. Gas mixing system

Figure 1. Block diagram to show the functionality of various components of the gas system.

A photo of the BaBar RPC/LST gas system is shown in figure 2. Certain redundancy is adopted in this design such as besides the mass flow controllers, which can set and display the actual flow rates for all three components, we add additional three gas flow meters to show the flow rates and control the shutoff valves in case of any one of the gases runs off the predefined flow rate range. As the long running experience shows that the gas controller can run into trouble at any time without any early sign. This design provides a quick diagnosis of the whole system.

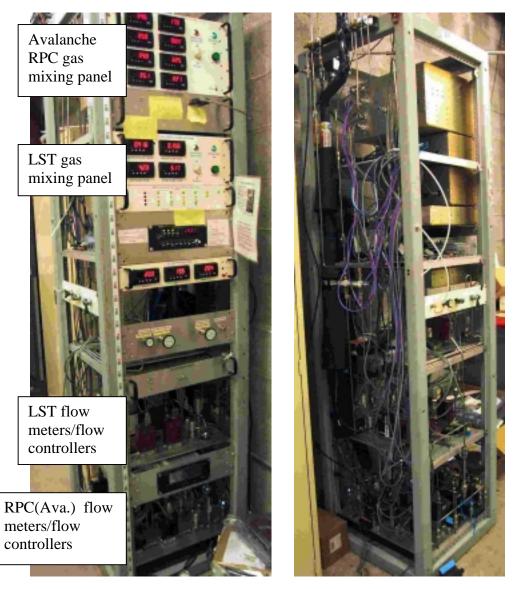


Figure 2. BaBar LST/avalanche RPC gas sytem photos, (a) Front view; (b) Side and rear view.

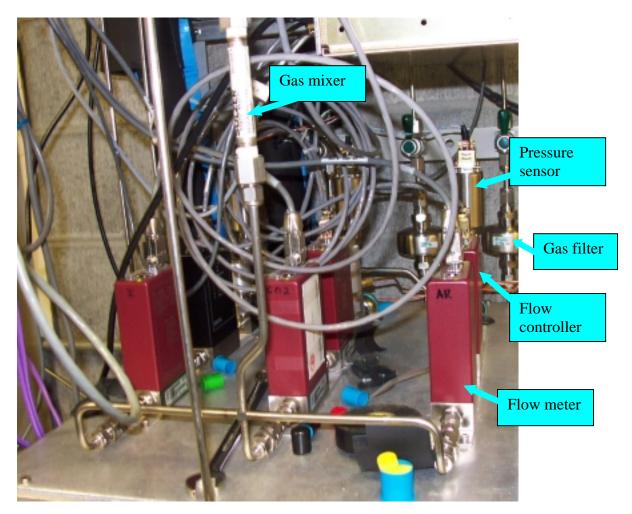


Figure 3. Three components gas flow and control system.

The gas volume for the far hall and the near hall RPC systems are 2.88 m³, 1.92 m³, respectively. We design identical gas system for far and near hall. Based on the far hall RPC's gas volume and assuming the gas flow rate is set at 1 vol/day, if we use the gas mixture R134A/Ar/Isobutane (44/50/6%), three gas component's flow rate should be set at 0.9, 1.0 and 0.12 SLM, respectively. The equivalent nitrogen flow rate should be rounded off to 3.0, 1.0 and 0.5 SLM, respectively.

Figure 4. Main panels of gas flow control system.

Figure 4 shows four panels of the gas system. The top panel displays actual gas flow rates for three components and the mixture. The second one is the exterior gas valve power control panel; this is connected to the Gas Shack safety rack. In case of gas shack alarm it closes the external valves. The third panel is for the gas flow control box, it sets the gas flow rate and the mixing ratios for all three gases. The last one - gas pressure monitor panel shows the gas pressure at the inlet side. It also monitors a pressure sensitive switch looking at the isobutane. This switch can turn off the system in case of too low isobutane pressure occurs.

2. Gas distribution system

When we design the gas distribution system we keep the following considerations in mind:

• Parallel connections preferred because the exhausted gas from a working RPC tends to be poisoned as it passes through an operating RPC;

- Large chamber count, ~ $840 \times 2 \text{ m}^2$ RPCs;
- Low cost/channel;
- On-line monitoring capability;
- Keep certain degree of redundancy to maintain highly safe operation;
- Gas might be exhausted to the detector hall directly just like BaBar RPC/LST.

For the BaBar LST/RPC the gas mixture, through long pipe, is transported to detector site. The gas distribution racks are located on the platform above the detector. Figure 5 shows the gas inlet distribution panel and outlet bubbler panel. We are proposing a similar design for Daya Bay RPC gas distribution system. This system can be located on the roof of each detector hall. To incorporate the movable roof design we only need to use a flexible gas pipe to connect the gas from fixed port on the wall to the gas inlet port on the roof.

Figure 5. BaBar LST gas distribution system. (A) Inlet gas distribution branches; (B) Outlet electronics gas bubblers.

Figure 6 shows a block diagram of the gas distribution system.

3. Electronic gas bubbling system

For a gas detector system the bubblers are always used at the output of the chambers. The electronic gas bubbler can provide a quick diagnostic of gas flow on line; according to BaBar and Belle it turns out to be a very useful system. We are going to

copy the digital bubbler design from Belle RPC¹. In this system the bubblers are instrumented with photogates, which are used to verify the flow rate. Its working principle is illustrated in figure 7. A photo of a real digital bubbler built by Princeton EP Lab is shown in figure 8.

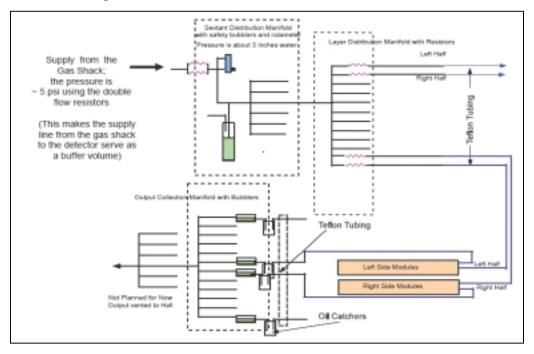


Figure 6. Block diagram of the gas distribution system.

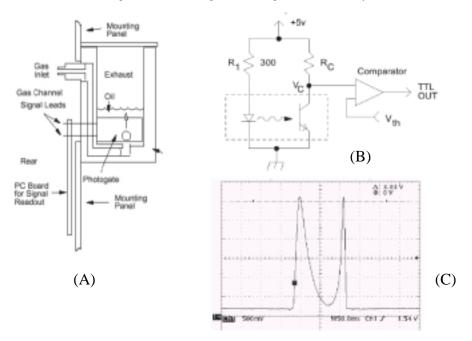


Figure 7. Electronics gas bubbler. (A) Mechanical structure of the bubbkler; (B) Circuit diagram of the photogate; (C) Output pulse of the digital bubbler.

¹ Daniel Marlow, "Glass Resistive Plate Chamber in the Belle Experiment", Seminar at Rice University, July 9, 1999. <u>http://wwwphy.princeton.edu/~marlow/talks/rice/rice.pdf</u>.

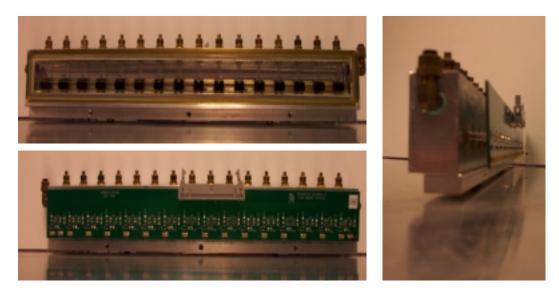
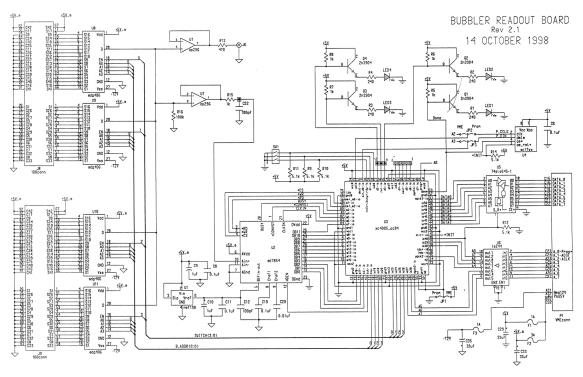
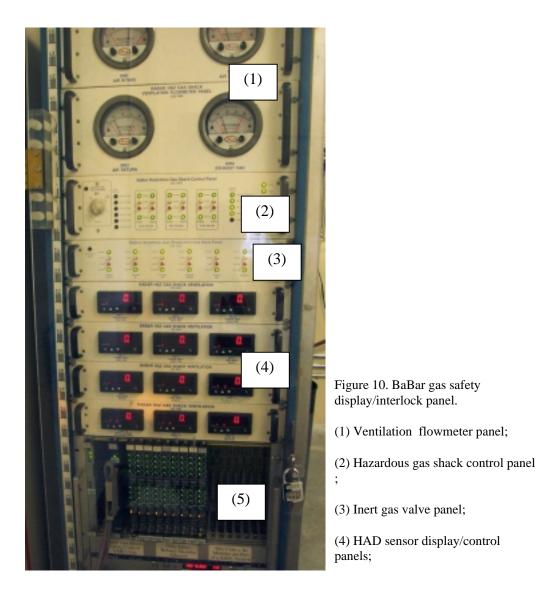


Figure 8. A real gas bubbler built by Princeton EP Lab, front, back and side view.

Without the gas bubble the light reaches the photogate through oil with no interrupt. When bubble passes, it will reflect partial light, and the light intensity at the sensor will be reduced that causes the current to drop, therefore produces a positive pulse. Bubble has been recorded as an electronic pulse. By counting the pulse rate, we'll be able to monitor the gas flow rate. Belle uses the following VME module to count and record the bubble's rate, each module has 64 channels that can used for 64 digital bubblers. In Daya Bay far hall we'll have $360 \times 2 \text{ m}^2$ RPCs, if each RPC has its own bubbler, we need 6 VME modules. Near halls we'll have 240 RPCs/each hall, 4 VME modules/each hall.




Figure 9. VME module of the gas digital bubbler, 64 channels per module.

4. Hazardous Atmosphere Detection (HAD) System

Figure 10 shows the hazardous atmosphere detection system for BaBar, it also should be implemented for Daya Bay experiment.

All HAD sensors are connected to their display/controllers on the HAD control panel as shown in figure 10 (4).

BaBar uses VME Summary Interlock and Alarm Module (SIAM) as the interface of its gas safety hardware system to the slow control system. The SIAM is a VME compatible module which can generate an output signal (trip) based on the latched state of eight input conditions (faults). Several modules can be daisy-chained to form a larger set of input conditions. Detailed description of SIAM can be found from this link http://www.slac.stanford.edu/BFROOT/www/Detector/DAQ/Det_Cntrl_Monitor/siam/si am.html.

5. Material cost estimation

An incomplete material cost estimation is listed in table 1. Main part of the material cost and part of labor cost without contingency are around \$41,000.

6. Some considerations for constructing the gas system

As we mentioned in section 2 any gas control unit can malfunction at any time without prewarning, our design should facilitate the system maintenance. My suggestions are:

- Use VCR fitting for all interconnection on the gas system panels;
- Keep the layout of the gas control components panel spacious;
- Stock spare gas control units at any time;

7. Integrated Gas System solution

We have researched a new gas system solution — Integrated Gas System (IGS) from Fujikin Inc. Actually in our lab there is a used IGS system that Kirk purchased from

eBay sometimes ago. Its compact design, standardized building blocks, "surface mounting' type of architecture makes maintenance very easy. Figure 11 shows an old used system in our lab. More information can be obtained at http://www.technofittings.com/pdf/igs/igsbroc.pdf.

We are also investigating Fujikin's patented new type of gas flow control system (FCS), according to their literature this flow meter is based on different working principle. It is more stable, accurate and simple. More information can be found at http://www.fujikin.co.jp/fujikinHP_e/product/english/bin/712-01_FCS_eng.pdf.

Although these are very attractive option, but we still don't know if they can be used for our application, and whether or not the cost fits Daya Bay's budgetary situation. We have requested quotation and more technical information. More follow-ups are under the way.

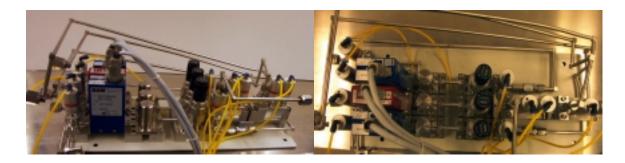


Figure 11. An old used Fujikin IGS system, (a) side view; (b) top view.

Subsyste		Specs	Price/unit#	or unit	Costritein	
	ng Rack					19058
C	omponents					
	1479 Mass Flow Controll	-	1503	1	1503	
		Full range 1.0				
	1479 Mass Flow Controll		1503	1	1503	
		Full range 0.5				
	1479 Mass Flow Controll		1503	1	1503	
		Full range 3.0				
	179A Mass Flow Meter	SLM	983	1	983	
		Full range 1.0				
	179A Mass Flow Meter	SLM	983	1	983	
		Full range 0.5				
	179A Mass Flow Meter	SLM	983	1	983	
		Туре 890				
		single-ended,				
	Gas Pressure Sensor	absolute	556	3	1668	
	247D four channel Power		1482	1	1482	
	247 B Tour channer r ower	oupply/redubut	1402		1402	
	Line gas regulator		400	3	1200	
	Line gas filter		200	3		
	Manual shutoff valve		150	3		
	Solenoid shutoff valve		150	4	600	
	Gas mixer		600	4		
		(a a a)		2		
	Heaters(isobutane and Fr		400		800	
	Gas regulator for gas tan	κ	400	3		
	Valve power supply		100	1		
	Line check valves		150	3	450	
R	ack construction					
	Swagelok/VCR fittings (\$	10-20/fitting)			1500	
	S.S. tubing (\$8/ft)				750	
	Rack		200	1	200	
Safety system						2739
G	as flow Interrupt Box (include S	impson controllers				
	Simpson controller		313	3	939	
	ower Supplies for Flowmeters,		shutoff valves	6	600	
P	ressure Monitoring Box (with S	impson monitors)			1200	
-	em Monitoring					14978
S	afety Status Monitoring					
	SIAM		1200	1	1200	
D	igital gas bubbler system					
	Bubbler board		56	23	1288	
	VME readout board		165	6		
	Bubbler (labor)		500	23		

Table 1. Material and part of labor cost estimation (incomplete, very preliminary)

Gassupply s	ite				3860
Argon					
	Gas regulator, tubing				
	Backup 6-packs regulators	400	6	2400	
Isobut	ane				
	Electric weight scale				
	Gas regulator, tubing				
	Backup tank gas regulator	400	1	400	
Freon					
	Electric weight scale				
	Backup tank gas regulator	400	1	400	
	Gas regulator, tubing				
Manua	al shutoff valves				
	Sample, Vent, Output to expeirmental hall	200	3	600	
Flexib	e hose of teflon				
	1/4" I.D. braided nylon tubing, 100 ft long	0.6	100	60	
Miscellaneou	IS				
V ariou	Various small parts not listed in the table			500	500
Grand total				41135	41135