Daya Bay RPC Gas Safety System Design

Changguo Lu, Kirk McDonald

Princeton University

(June 19/20, 2008)

Updated on March 18, 2009
Outline

1. Overview
2. Gas flammability
3. Number of gas cylinders underground
4. Isobutane storage cabinet
5. Isobutane cylinder scale
6. Gas safety interlock system
7. Emergency purging system
8. Cost estimation

Overview of the Proposed RPC Gas System

The RPC gas system has five major components:
- The gas storage bottles, including the bottle changeover system
- The gas mixing and fire/detector safety monitoring system
- The gas distribution system
- The RPCs
- The gas exhaust system, including the output bubbler system.

The hazardous gas safety system, but not the ODH system, is part of the RPC gas system scope.
Location of the Gas System in the Daya Bay Near Hall (#1)

- Gas-distribution / digital-bubbler system crates (total 7) on RPC support frame.
- Host PC for the digital bubbler system
- Gas mixing panel and control system, 2 6-pack Ar cylinder stations, Isobutane gas cabinet
- SF6, R134A Gas cylinders, ODH & HAD sensors
- USB cable
- Gas cylinder transport route
Proposed Gas Mixture

The baseline gas mixture is Ar/R134a/Isobutane/SF₆ (75.5/20/4/0.5 volume ratios), as used in the OPERA experiment.

In addition, 0.4% of water vapor will be added to reduce aging of the bakelite RPCs.

Isobutane (C₄H₁₀) gas mixtures are nonflammable if the isobutane fraction is lower than a certain limit.

75% argon ⇒ low operating voltage, but need UV quenching.

R134A = C₂H₂F₄ and SF₆ provide the quenching.

The global-warming-potential index of the OPERA gas mixture is smaller than that of the BaBar mixture (35% R134A) and comparable to that of the Belle mixture (30% R134A).

OPERA has used this mixture at Gran Sasso for several years. Due to flammability concern they are testing an alternative gas mix:

Ar/R134A/Isobutane/SF₆ (64/32/3.5/0.5).
RPC Gas Flammability Analysis

During the BaBar detector construction SLAC hired Hughes Associates, Inc. to perform an analysis of flammability hazards for the entire detector.

The fire hazard associated with the use of butane (C_4H_{10}) gas mixtures in BaBar was one of the items. (Hughes report: Doc-DB #574)

Here we shall briefly mention the main conclusion that is relevant to our assessment.

Issue beyond the scope of this review:

Should the Daya Bay project commission a fire safety review for the entire experiment by a professional consulting firm?
The figure shows the flammability regions for several butane/inert gas mixtures in the air.

The curves for butane/N$_2$ and butane/CO$_2$ are from lab tests by the Bureau of Mines (Zabetakis, Bulletin 627).

Any point in the plot corresponds to a gas mixture of butane/inert gas/air with the mixing ratio of y/x/(100-y-x).

If the point falls into the corresponding flammable region, this mixture is flammable.

Hughes calculated the gas mixture of 30% C$_2$F$_6$/balance Ar with Isobutane, because C$_2$F$_6$ is very similar to R134A (C$_2$H$_2$F$_4$), especially in heat capacity.

The flammability limit of Isobutane in this gas mixture is 6.6%.
• The baseline gas mixture is the OPERA RPC gas Ar/R134A/Isobutane/SF$_6$ (75.5/20/4/0.5). But in a very conservative analysis we couldn't confirm it as non-flammable (DocDB #2000).

 [Link to document](http://puhep1.princeton.edu/~mcdonald/dayabay/Lu/DayaBayRPCGasSafety-06072008.pdf)

• To be conservative we could use an alternative gas mixture: Ar/R134A/Isobutane/SF$_6$ (65.5/30/4/0.5).

 The previous slide shows this to be non-flammable.

 Recent tests done by OPERA RPC group (DocDB #2278) show a very similar gas mix with good performance and ~1000V HV plateau higher than original OPERA gas mix.

 Since our HV supply can provide +/- 4000V, this gas mixture won't call for any modification to the present RPC and HV design.

 [Link to document](http://puhep1.princeton.edu/~mcdonald/examples/detectors/paoloni_lnf-08-14.pdf)

• The advantage of this gas mixture is obvious: the RPC system downstream from gas mixing panel won't need to be categorized as a flammable gas control area.
Number of Cylinders Underground

There is a tradeoff between frequency of transport/changeover of bottles vs. degree of oxygen deficiency hazard and flammable gas hazard from leaks at bottles.

In addition to bottles in use, a second set of bottles should be underground at all times.

The following configuration ⇒ 60 bottles underground

[plus 3 more argon bottles for the Emergency Purge System (slides 24-26)].

<table>
<thead>
<tr>
<th>Exp. Hall</th>
<th>Gas</th>
<th>Cylinder</th>
<th>Location</th>
<th>Days/90% of cylinder used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Hall</td>
<td>Ar</td>
<td>6 cyl. @1800psi</td>
<td>Mix. Room</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>R134A</td>
<td>100kg</td>
<td>Storage Room</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Isobutane</td>
<td>9kg</td>
<td>Mix. Room</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>SF₆</td>
<td>4kg</td>
<td>Storage Room</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>Cyl. 80, 85 ft³</td>
<td>Mix. Room</td>
<td>>180 days</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>Cyl. 80, 85 ft³</td>
<td>Mix. Room</td>
<td>>1 year</td>
</tr>
<tr>
<td>Far hall</td>
<td>Ar</td>
<td>6 cyl. @1800psi</td>
<td>Mix. Room</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>R134A</td>
<td>100kg</td>
<td>Storage Room</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Isobutane</td>
<td>9kg</td>
<td>Mix. Room</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>SF₆</td>
<td>4kg</td>
<td>Storage Room</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>Cyl. 80, 85 ft³</td>
<td>Mix. Room</td>
<td>>180 days</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>Cyl. 80, 85 ft³</td>
<td>Mix. Room</td>
<td>>1 year</td>
</tr>
</tbody>
</table>
Isobutane Gas Cabinet

As suggested by D. Beavis, isobutane cylinders will be stored in a gas cabinet, which incorporates have Class I, Div. 1 electrical devices, such as gas sensors, sprinklers, and solenoid valve.

In each gas cabinet we’ll install two HAD sensors, two air-flow sensors, an electronic digital scale, a manual scale, and cylinder changeover panel.

In addition, the cabinet volume must accommodate two 9-kg Isobutane cylinders.

Unresolved issue:

Water sprinklers are recommended by the US Fire Safety Code, but are not foreseen in the Daya Bay civil construction.

A minimal solution would be a simple water pipe connected to the water sprinkler in the isobutane cabinet.
Isobutane Gas Cabinet (cont’d)

Features:
- All welded construction using 11-gauge steel, epoxy painted.
- Texture finish on outside, smooth finish on inside of cabinet.
- Exhaust vent located on top of cabinet is 6” diameter x 3” high.
- 165°F sprinkler head on top of cabinet is coated with bees wax.
- Removable back panel mounts to inside rear cabinet.
- Cylinder brackets or lecture bottle brackets are adjustable for precise pig-tail alignment.
- Door and window will close and latch automatically.
- Window is 1/4” thick clear wire glass.
- Louvers at bottom of door.
- Flush mounted stainless steel paddle latch.
- All stainless steel fasteners.

Options:
- Dome roof configurations
- Keyed door latch
- Air intake filter
- Custom colors
- Wall mounting brackets
- Full-length back panel

The Uniform Fire Code requires 150-200 linear ft/min of air through the window opening, that should be provided by the experimental hall ventilation system.

$1300
This is the lowest quote we have obtained to date.

Safety Equipment Corporation
141 Old County Road
Belmont, CA 94002
(650) 596-5422
Fax (650) 596-0143
E-Mail: Info@SafetyEquipmentCorp.com
Web: SafetyEquipmentCorp.com

Daya Bay RPC Gas Safety System FDR, June 19, 2008
Isobutane Gas Cabinet (cont’d)

GTS-WELCO S5000-2
$1920.

SGD 7200, $2376.

HOW TO ORDER

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7100</td>
<td>one cylinder cabinet</td>
</tr>
<tr>
<td>7200</td>
<td>two cylinder cabinet</td>
</tr>
</tbody>
</table>
HAD Sensor

One candidate of such HAD sensor is RAEGuard LEL.

The RAEGuard LEL is a permanently mounted (fixed) catalytic bead combustible gas transmitter that operates from 9 to 36 VDC power source and provides a 4-20mA analog output in the range of 0-100%LEL combustible gas. The microprocessor based circuit is housed in an explosion-proof enclosure, the RAEGuard LEL is equipped with a local digital display of the gas concentration and function keys for performing calibration. The RAEGuard LEL is operated with a standard 4-20mA controller or as a stand-alone sensor module.

Key Features
- Highly poison-resistant catalytic bead combustible gas LEL sensor
- 4-20mA analog output of 0-100%LEL combustible gas including methane, acetylene, propane or other combustible gases
- Explosion-proof enclosure for hazardous environment application
- Magnetic key interface eliminates need to open explosion-proof housing when making calibration or other minor adjustments
- Operation at 9 to 36 VDC
- Dry contact output (<30V, 2A)

Applications:
- Refineries
- Oil production
- Chemical plants
- Industrial safety
- Shipyard and maritime
- Power plants
- Steel mills

Hazardous Location Classification:
- UL: Class I, Division 1, Groups B, C and D
- Temperature Code T6
Air Ventilation Sensor and Controller

Working principle: Pitot tube to measure the air velocity.

Pt is the total pressure, Ps is the static pressure.
Notice the sensing holes for these two pressures.
The manometer shown on the left can measure the pressure difference between Pt and Ps, this is Pv, the air velocity pressure.

Dwyer model Photohelic 3000SGT pressure transmitter/controller
Isobutane Gas Cabinet Cost Estimate

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase of 3 cabinets (+ shipping to Princeton)</td>
<td>$4800</td>
</tr>
<tr>
<td>Sensor cost appears in the Gas System Crate budget</td>
<td></td>
</tr>
<tr>
<td>Labor to install sensors, scales, changeover gear</td>
<td>$2400</td>
</tr>
<tr>
<td>Shipment to Daya Bay</td>
<td>$5000</td>
</tr>
<tr>
<td>Total cost (3 systems)</td>
<td>$12,200</td>
</tr>
</tbody>
</table>

Important issue:

IHEP must specify the dimensions of the isobutane cylinder before we can order a gas cabinet.
D. Beavis notes that BNL has purchased a FlexGas cylinder cabinet from SDC.

We have contacted SDC, who will quote on a customized cabinet to fit our application.

The “turnkey” cabinet would include a HAD sensor, air flow sensor, digital scale, changeover panel, etc.

We also have asked Praxair to quote on an outfitted cabinet.
Quote from SDC

FlexGas™ Manual/Semi-Auto Gas Cabinets

<table>
<thead>
<tr>
<th>Item#</th>
<th>Description</th>
<th>Qty</th>
<th>Unit Price</th>
<th>Extended</th>
</tr>
</thead>
</table>
| 1.1 | **FlexGas™ Gas Cabinet:**
- Manual 2-Cylinder Independent Out with Onboard Purge configured as [C₄H₁₀ – N₂]
- Configured with a 4-Valve Process Panel for C₄H₁₀ (includes manual PURGE)
- Configured with a 2-Valve Purge Panel
- Includes FlexPower™ Controller Option
 - Touch Screen Display
 - Eight (8) spare “user configurable” inputs
 - Eight (8) spare “user configurable” outputs
 - EMO
- (see attached Product Specification Checklist for details and Product Data Sheet for additional information) | 1 | $12,430.00 | $12,430.00 |
| 1.2 | Adjustable Cylinder Shelf (for cys <51” tall, per cyl.) | 1 | $165.00 | $165.00 |
| 1.3 | Integrated Cylinder Scales (per liquefied gas) | 1 | $660.00 | $660.00 |
| 1.4 | Onboard Gas Monitoring (combustibles only, per gas type, uses an ALARM INPUT) | 1 | $695.00 | $695.00 |
| 1.5 | Onboard Gas Monitoring (non-combustibles, per gas type, uses an ALARM INPUT) | 1 | $1,730.00 | $1,730.00 |
| 1.6 | UV/IR Fire Detection Sensor (per cabinet, uses an ALARM INPUT) | 1 | $2,900.00 | $2,900.00 |
| 1.7 | Excess Flow Switch (per panel) | 1 | $540.00 | $540.00 |
| 1.8 | Cylinder Pressure Switch (per panel) | 1 | $295.00 | $295.00 |
| 1.9 | Dual Stage Regulator (single stage std., per process panel) | 1 | $350.00 | $350.00 |

Cost: $17k/site, or $51k for three Isobutane cabinets.
Cylinder Scale Safety Issue

In the RPC gas mixture, the other three gases besides argon are actually in the liquid phase. We will use their vapors. The saturated vapor pressure in these cylinders won’t change until the last bit of liquid has vaporized.

⇒ Monitoring the pressure is not enough.

We have to know how much liquid is left in the tank.

For isobutane this poses another safety issue: the electronic cylinder scale must meet the Class I, Div 1 standard.

Force Flow model WR200-3HA with Wizard 4000-3 indicator is a candidate: $5150.

INTR-BARR (intrinsic safety barrier) for electronic scale, which is only needed for Isobutane): $1165.

The relays in the indicator will be used in the gas status crate to warn the shift taker to changeover the depleted cylinder when the weight drops below the preset limit.
Standby Cylinder Scale

[Not a safety issue, but a small change to the gas system baseline.]

To lower the cost of the cylinder scales, the second cylinder of each pair of R134A, Isobutane and SF6 cylinders will be used only briefly during a changeover; then the new, first cylinder will be brought online.

The standby cylinder can be weighed by a simple mechanical scale.
Fire safety interlock function:

If the Emergency Shutoff button is pushed, all four gases will be shut off simultaneously.
Gas System Status Crate Wiring Diagram

See next slide for high resolution diagram.
Cost Estimate of the Status Crate

GAS SYSTEM STATUS PANEL

<table>
<thead>
<tr>
<th>Part Description</th>
<th>QTY</th>
<th>PRICE ea</th>
<th>DISTRIBUTOR</th>
<th>DISTRIB #</th>
<th>TOTAL PRICE</th>
<th>SOURCE OF QUOTE</th>
<th>Sub-total</th>
<th># of sets</th>
<th>Total</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>24V converter</td>
<td>1</td>
<td>$95.00</td>
<td>Newark</td>
<td>83F2437</td>
<td>$95.00</td>
<td>Lambda kwd15-1212</td>
<td>$5,286.89</td>
<td>3</td>
<td>$15,860.67</td>
<td>$44,466.15</td>
</tr>
<tr>
<td>conn 12pin male-female</td>
<td>1</td>
<td>$10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conn 4pin male-female</td>
<td>5</td>
<td>$10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conn 8pin male-female</td>
<td>3</td>
<td>$10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td>4</td>
<td>$5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>krpa-11dn-24</td>
<td>1</td>
<td>$12.44</td>
<td>Newark</td>
<td>21F1087</td>
<td>$12.44</td>
<td>TYCO Relay_KHAU_11DN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT</td>
<td>14</td>
<td>$2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Socket</td>
<td>1</td>
<td>$5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAD sensor (EX-5100)</td>
<td>2</td>
<td>$1,145.00</td>
<td>Enmet Corp.</td>
<td></td>
<td>$2,290.00</td>
<td>Email quote from Enmet. Http://www.enmet.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simpson H335</td>
<td>4</td>
<td>$265.00</td>
<td></td>
<td></td>
<td></td>
<td>Email_quote_Simpson_meter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photohelic 3000SGT</td>
<td>2</td>
<td>$418.00</td>
<td>Dwyer Instruments</td>
<td></td>
<td>$836.00</td>
<td>http://www.dwyer-inst.com/htdocs/pressure/Series3000Price.cfm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitot tube (160-8)</td>
<td>2</td>
<td>$46.75</td>
<td>Dwyer Instruments</td>
<td></td>
<td>$93.50</td>
<td>http://www.dwyer-inst.com/htdocs/airvelocity/Series160Price.cfm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity sensors w/ Swagelok Tee</td>
<td>4</td>
<td>$100.00</td>
<td>Honeywell HIH-4000-003</td>
<td>2586425</td>
<td>$400.00</td>
<td>http://www.newark.com/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather Pro Center, WS-2315</td>
<td>1</td>
<td>$259.95</td>
<td>La Crosse Technology</td>
<td></td>
<td>$259.95</td>
<td>http://www.lacrosetechnology.com/2315oak/index.php</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panels 6u (19”x10.5”)</td>
<td>1</td>
<td>$42.00</td>
<td>Newark</td>
<td>2586425</td>
<td>$42.00</td>
<td>BUDD PA-1106-BT</td>
<td>$538.00</td>
<td>3</td>
<td>$1,614.00</td>
<td></td>
</tr>
<tr>
<td>Panel Silkscreening</td>
<td>1</td>
<td>$200.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric weight scale system</td>
<td>1</td>
<td>$5,150.00</td>
<td>Force Flow</td>
<td></td>
<td>$5,150.00</td>
<td>http://www.forceflow.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrinsic safety barrier</td>
<td>1</td>
<td>$1,170.00</td>
<td>Force Flow</td>
<td></td>
<td>$1,170.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAD sensor calibration equipment</td>
<td>1</td>
<td>$265.00</td>
<td></td>
<td></td>
<td>$265.00</td>
<td>Email quote from Enmet. $265.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td></td>
</tr>
<tr>
<td>hours charge/hour</td>
<td>16</td>
<td>85.82</td>
<td></td>
<td></td>
<td>1373.12</td>
<td></td>
<td>$5,516.48</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>panel designs</td>
<td>8</td>
<td>85.82</td>
<td></td>
<td></td>
<td>686.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP Lab</td>
<td>16</td>
<td>87.32</td>
<td></td>
<td></td>
<td>1397.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly</td>
<td>24</td>
<td>85.82</td>
<td></td>
<td></td>
<td>2059.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Includes cost of the HAD sensors and air flows sensors for the Isobutane cabinets.
Emergency Purge System

As suggested by D. Beavis, an emergency activation has been added to the RPC gas purging system.

Even though the RPC gas is non-flammable, fire fighters might wish to have the option to purge the RPC gas from the chambers.

Limitations of flow orifices imply that such purging would take 7 hours in the Near Hall and 10 hours in the Far Hall.

Once the Emergency Purge button has been pushed, the gas cylinders that provide the normal 4-component gas mixture will be shut off immediately. The RPC chambers will enter then a purge mode in which only Ar gas flows into RPC system at the above mentioned rate. Because the overpressure protection bubblers are still functioning, RPCs won’t be damaged by this action.

There is a standalone Ar gas cylinder to provide the purging gas. This cylinder will have a gas regulator and a flow restrictor installed. The emergency push button opens a solenoid valve, which controls Ar gas flow to the ½” OD S.S. tubing at the outlet of gas mixing panel.

Since this apparatus should work during an emergency situation, a UPS power supply must be used to provide the power for the solenoid valve.

On slow control system there will be a software button, the shift taker can shutoff (purging as well?) the entire RPC gas system through this button in emergency response.
Emergency Purge System

Wall mount pushbutton switch for emergency response

UPS power

Solenoid valve, normal close, activated open manual overridable.

To gas control power crate to cut off solenoid valve’s power and shut off all four gases at once

(See next slide)

Flow restrictor model B-360-VS-11 from flowrestrictor.com. If set the Ar regulator at 35 PSIG, the Ar flow rate will be ~6.3 slm. It will be able to purge the far hall RPC system in 10.5 hours, near hall RPC system in 7 hours.

Ar

Gas regulator

Flow restrictor

To outlet port of gas mixing panel (after water bubbler)

Where should this pushbutton switch be located?

One cylinder of Ar can provide more than 3 volumes for the Far Hall RPCs and almost 5 volumes for Near Hall RPCs, so just one cylinder should be enough for this system in each Hall.
Emergency Purge System (cont’d)

When the emergency button is pushed, the flow of four gas components is halted, and flow of purge argon is initiated.
Gas slow control system GUI

Daya Bay Gas System

1. Flow rate (SCCM)
 - Ar
 - R134A
 - Isobutane
 - SF6

2. Gas Pressure (PSIG)
 - Ar
 - R134A
 - Isobutane
 - SF6

3. Water Bubbler Flow rate (SCCM)
 - Dry
 - Wet
 - Total

All meters and indicators on screen are passive but this Emergency Shutoff Block.

If this red light is on, it means the hardware shutoff button has been pushed manually.

If for some reason the shift taker needs to push this software button, a warning sign must appear to remind the user the consequence of this action, upon receipt of the confirmation the relevant hardware action takes place.
Cost Estimate of the Emergency Purge System

<table>
<thead>
<tr>
<th>Description</th>
<th>Price/each</th>
<th>Distributor</th>
<th>Model #</th>
<th>Qty</th>
<th>Total</th>
<th>Total/set</th>
<th># set</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pushbutton switch</td>
<td>13.17</td>
<td>Newark</td>
<td>C&K 1.30.070.121/13C</td>
<td>1</td>
<td>13.17</td>
<td>1270.99</td>
<td>3</td>
<td>3812.97</td>
</tr>
<tr>
<td>Contact block</td>
<td>13.61</td>
<td>Newark</td>
<td>C&K 1.20122.0210000</td>
<td>1</td>
<td>13.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas regulator</td>
<td>225.9</td>
<td>GTS-WELCO</td>
<td>S158-1 0-50PSI</td>
<td>1</td>
<td>225.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow restrictor</td>
<td>100</td>
<td>flowrestrictor.com</td>
<td></td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPS power</td>
<td>110</td>
<td>APC</td>
<td></td>
<td>1</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenoid valve</td>
<td>66.75</td>
<td>Peter Paul</td>
<td>22K7YGM-220VAC</td>
<td>1</td>
<td>66.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4” NPT to Swagelok</td>
<td>25</td>
<td>Swagelok</td>
<td></td>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall box</td>
<td>30</td>
<td></td>
<td></td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>85.82</td>
<td></td>
<td></td>
<td>8</td>
<td>686.56</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RPC Gas System Cost Summary

- **Gas system status crates**: ($44,466)
- **Isobutane cabinets***: ($12,200)
- **Emergency purge systems**: ($3,812)

Total cost: $60,478.

* Add $40k if use turnkey Isobutane cabinets.